Skip to main content

Methods for Sampling and Analyzing Wetland Soil Bacterial Community

  • Chapter
  • First Online:
Wetland Techniques

Abstract

Wetland soil, a heterogeneous environment highly modified by its hydrologic condition and vegetation, provides habitats for a variety of aerobic and anaerobic bacteria. Sampling the wetland soil bacterial community involves collection of bulk or rhizosphere soil or both, depending on the purpose of the study. In any case, it is crucial to assure that random, but representative samples are collected to provide meaningful data and to meet the purposes of the study. Approaches to the analyses of the bacterial communities in wetland soils may be divided into two general categories: cultivation-based and cultivation-independent techniques. The first category relies on laboratory cultivation and the second is based on the analyses of indicator molecules such as DNA extracted directly from soil samples. The primary cultivation-independent methods include 16S rRNA gene-based cloning library, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and fluorescence in situ hybridization (FISH). More recently, high-throughput technologies, such as next-generation DNA sequencing (e.g., 454 pyrosequencing and Illumina sequencing) and GeoChip, were developed to generate large amounts of genetic information allowing more in-depth and comprehensive assessment of bacterial communities. This chapter focuses on some practical approaches commonly used for sampling and analyzing bacterial communities in wetland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  PubMed  CAS  Google Scholar 

  • Anderson JPE (1987) Handling and storage of soils for pesticide experiments. In: Somerville L, Greaves MP (eds) Pesticide effects on soil microflora. Taylor & Francis, London, pp 45–60

    Google Scholar 

  • Angeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ (2006) Effects of an invasive cattail species (typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiol Lett 263:86–92

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (2004) Handbook of microbiological media. CRC Press, New York

    Book  Google Scholar 

  • Avaniss-Aghajani E, Jones K, Holtzmann A, Aronson T, Glover N, Boian M, Froman S, Brunk CF (1996) Molecular technique for rapid identification of mycobacteria. J Clin Microbiol 34:98–102

    PubMed  CAS  Google Scholar 

  • Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) (1992) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) GenBank. Nucleic Acids Res 28:15–18

    Article  PubMed  CAS  Google Scholar 

  • Bouvier T, del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  PubMed  CAS  Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194

    Article  PubMed  Google Scholar 

  • Brofft JE, McArthur JV, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769

    Article  PubMed  CAS  Google Scholar 

  • Cadillo-Quiroz H, Yavitt JB, Zinder SH (2009) Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59:928–935

    Article  PubMed  CAS  Google Scholar 

  • Calheiros CSC, Teixeira A, Pires C, Franco AR, Duque AF, Crispim LFC, Moura SC, Castro PML (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44:5032–5038

    Article  PubMed  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl 1):4516–4522

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Dandurand LC, Knudsen GR (1997) Sampling microbes from the rhizosphere and phyllosphere. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 391–399

    Google Scholar 

  • Davidsson TE, Stepanauskas R, Leonardson L (1997) Vertical patterns in nitrogen transformations during infiltration in two wetland soils. Appl Environ Microbiol 63:3648–3656

    PubMed  CAS  Google Scholar 

  • de Bruijn FJ (1992) Use of repetitive (repetitive extragenic element and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187

    PubMed  Google Scholar 

  • Dedysh SN (2011) Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining gaps. Front Microbiol 2:1–15

    Article  Google Scholar 

  • Dedysh SN, Panikov NS, Liesack W, Großkopf R, Zhou J, Tiedje JM (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peatwetlands. Science 282:281–284

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic sphagnum peat bog. Appl Environ Microbiol 72:2110–2117

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Shubina EE, Kashin AG (1992) Phospholipid and fatty acid composition of some Basidiomycetes. Phycochemistry 31:845–849

    Google Scholar 

  • DIFCO Laboratories (1985) DIFCO manual dehydrated culture media and reagents for microbiology. DIFCO Laboratories, Detroit

    Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed  CAS  Google Scholar 

  • Farrelly V, Rainey F, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Gherna R, Pienta P, Cote R (1992) ATCC – American Type Culture Collection: catalogue of bacteria and phages. American Type Culture Collection, University of Michigan, Ann Arbor

    Google Scholar 

  • Gomes NCM, Kosheleva IA, Abraham WR, Smalla K (2005) Effects of the inoculant strain pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 54:21–33

    Article  PubMed  CAS  Google Scholar 

  • Gottschal JC, Harder W, Prins RA (1992) Principles of enrichment, isolation, cultivation, and preservation of bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 1, 2nd edn. Springer, New York, pp 149–196

    Google Scholar 

  • Hadwin AM, Del Rio LF, Pinto LJ, Painter M, Routledge R, Moore MM (2006) Microbial communities in wetlands of the Athabasca oil sands: genetic and metabolic characterization. FEMS Microbiol Ecol 55:68–78

    Article  PubMed  CAS  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5:235–237

    Article  PubMed  CAS  Google Scholar 

  • Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008) Environmental and anthropogenic controls of bacterial communities in wetland soils. Proc Natl Acad Sci USA 105:17842–17847

    Article  PubMed  CAS  Google Scholar 

  • Hazen TC (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Wieland G, Schönfeld J, Schönwälder A, Gomes NCM, Smalla K (2001) Bacterial community profiling using DGGE or TGGE analysis. In: Rouchelle P (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific Press, Wymondham, pp 177–190

    Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in plant root microbiome. Nat Biotechnol 30:961–962

    Article  PubMed  CAS  Google Scholar 

  • Holben WE (1997) Isolation and purification of bacterial community DNA from environmental samples. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 431–436

    Google Scholar 

  • Horz H-P, Tchawa Yimga M, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling Appl. Environ Microbiol 67:4177–4185

    Article  CAS  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed  Google Scholar 

  • Isaacs EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Kennedy AC (1994) Carbon utilization and fatty acid profiles for characterization of bacteria. In: Weaver R, Angle JS (eds) Methods of soil analysis. Part 2 Microbiological and biochemical properties. Soil Science Society of America, Madison, pp 543–554

    Google Scholar 

  • Kip N, Ouyang W, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MSM, Damste JS, Op den Camp HJM (2011) Detection, isolation and characterization of acidophilic methanotrophs from sphagnum mosses. Appl Environ Microbiol 77:5643–5654

    Article  PubMed  CAS  Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer E-M (2004) Characterization of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50:13–23

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S RRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  Google Scholar 

  • Louws FJ, Schneider M, de Bruijn FJ (1996) Assessing genetic diversity of microbes using repetitive-sequence-based PCR (rep-PCR). In: Toranzos G G (ed) Amplification methods for the analysis of environmental samples. Technomic Publishing Company, Stamford, pp 63–94

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376

    PubMed  CAS  Google Scholar 

  • Mausbach MJ, Parker WB (2001) Background and history of the concept of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils. Lewis, New York, pp 19–34

    Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    Article  PubMed  CAS  Google Scholar 

  • Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65(8):3518–3525

    PubMed  CAS  Google Scholar 

  • Nicomrat D, Dick WA, Tuovinen OH (2006) Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage. J Environ Qual 35:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Nikolausz M, M’arialigeti K, Kov’acs G (2004) Comparison of RNA- and DNA- based species diversity investigations in rhizoplane bacteriology with respect to chloroplast sequence exclusion. J Microbiol Methods 56:365–373

    Article  PubMed  CAS  Google Scholar 

  • Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792

    Article  PubMed  CAS  Google Scholar 

  • Ogram A, Feng X (1997) Methods of soil microbial community analysis. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 422–430

    Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123

    PubMed  CAS  Google Scholar 

  • Osborn MA, Moore ERB, Timmis KN (2000) An evaluation of terminal- restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  • Otte ML, Dekkers MJ, Rozema J, Broekman RA (1991) Uptake of arsenic by aster tripolium in relation to rhizosphere oxidation. Can J Bot 69:2670–2677

    Article  CAS  Google Scholar 

  • Otte ML, Kearns CC, DoyleBull MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55:154–161

    Article  PubMed  CAS  Google Scholar 

  • Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh SN (2012) Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the acidobacteria, and emended description of acidobacterium capsulatum Kishimoto et al. Int J Syst Evol Microbiol 62:430–437

    Article  PubMed  Google Scholar 

  • Pepper IL (1997) PCR: applications for plant and soil microbes. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 437–444

    Google Scholar 

  • Petersen RG, Calvin LD (1996) Sampling. In Sparks DL (ed) Methods of soil analysis: chemical methods. Part 3. Soil Science Society of America book series no. 5. ASA-SSSA, Madison

    Google Scholar 

  • Rademaker JLW, de Bruijn FJ (1997) Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In: Caetano-Anolles G, Gresshoff PM (eds) DNA markers: protocols, applications and overviews. Wiley, New York, pp 151–171

    Google Scholar 

  • Richardson CJ, Marshall PE (1986) Processes controlling the movement, storage, and export of phosphorus in a fen peatland. Ecol Monogr 56:279–302

    Article  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AK, Kent AD, Daroub SH, Camargo FA, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Roulet NT (2000) Peatlands, carbon storage, greenhouse gases and the Kyoto protocol: prospects and significance for Canada. Wetlands 20:605–615

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  PubMed  CAS  Google Scholar 

  • Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle numberon16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol Ecol 60:341–350

    Article  PubMed  CAS  Google Scholar 

  • Sizova MV, Panikov NS, Tourova TP, Flanagan PW (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a sphagnum peat bog. FEMS Microbiol Ecol 45:301–315

    Article  PubMed  CAS  Google Scholar 

  • Sizova MV, Panikov NS, Spiridonova EM, Slobodova NV, Tourova TP (2007) Novel facultative anaerobic acidotolerant Telmatospirillum sibiriense gen. nov. sp. nov. isolated from mesotrophic fen. Syst Appl Microbiol 30:213–220

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Tiedje J (2002) Microbial ecology and genomics: a crossroads of opportunity. American Academy of Microbiology, colloquium report. http://www.asm.org

  • Suzuki M, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanner RS (1997) Cultivation of bacteria and fungi. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 52–60

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Article  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Ulrich A, Becker R (2006) Soil is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Smalla K (1997) Methods for sampling soil microbes. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology Press, Washington, DC, pp 383–390

    Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Wang GCT, Wang Y (1996) The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhou H, Meng J, Peng X, Jiang L, Sun P, Zhang C, Van Nostrand JD, Deng Y, He Z, Wu L, Zhou J, Xiao X (2009) GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca ridge hydrothermal vent. Proc Natl Acad Sci 106:4840–4845

    Article  PubMed  CAS  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236

    Article  Google Scholar 

  • Weber KP, Legge RL (2010) Method for the detachment of culturable bacteria from wetland gravel. J Microbiol Methods 80(3):242–250

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • White DC, Bobbie RJ, King JD, Nickels J, Amoe P (1979) Lipid analysis of sediments for microbial biomass and community structure. In: Litchfield CD, Seyfried PL (eds) Methodology for biomass determinations and microbial activities in sediments. ASTM STP 673. American Society for Testing and Materials, Philadelphia, pp 87–103

    Chapter  Google Scholar 

  • Williams RT, Crawford RL (1983) Microbial diversity of Minnesota peatlands. Microbiol Ecol 9:201–214

    Article  CAS  Google Scholar 

  • Wilmotte A, Van Der Auwera G, DeWachter R (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Liu X, Schadt CW, Zhou JZ (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72:4931–4941

    Article  PubMed  CAS  Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38

    Google Scholar 

  • Zenoff VF, Heredia J, Ferrero M, Siñeriz F, Farías ME (2006) Diverse UV-B resistance of culturable bacterial community from high-altitude wetland water. Curr Microbiol 52:359–362

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Tian J, Jiang N, Guo X, Wang Y, Dong X (2008) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Kang S, Schadt CW, Garten CT Jr (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci 105:7768–7773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixin Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hou, A., Williams, H.N. (2013). Methods for Sampling and Analyzing Wetland Soil Bacterial Community. In: Anderson, J., Davis, C. (eds) Wetland Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6931-1_2

Download citation

Publish with us

Policies and ethics