Skip to main content

Surfactants in Agriculture

  • Chapter
  • First Online:
Green Materials for Energy, Products and Depollution

Abstract

Adjuvants such as surfactants improve pesticide efficiency by multiple mechanisms. In particular surfactants increase the foliar uptake of herbicides, growth regulators, and defoliants. Therefore, the choice of the adjuvant in an agrochemical formulation is crucial. Surfactants include anionic, nonionic, amphoteric and cationic surfactants. This review describes the role and properties of new adjuvants for agriculture. In particular adjuvants such as glyphosate formulations are modified to decrease ecotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abribat B, Anderson T, Oester D (2007) Alkoxylated polyglycosides, next generation glyphosate potentiators. In: Gaskin RE (ed) Proceedings of the 8th international symposium on adjuvants for agrochemicals, ISAA, Christchurch

    Google Scholar 

  • Aladesanwa RD, Oladimeji MO (2005) Optimizing herbicidal efficacy of glyphosate isopropylamine salt through ammonium sulphate as surfactant in oil palm (Elaeis guineensis) plantation in a rainforest area of Nigeria. Crop Prot 24:1068–1073

    CAS  Google Scholar 

  • Alberts E, Kalverboer AF, Hopkins B (1983) Mother infant dialog in the first days of life an observational study during breast-feeding. J Child Psychol Psychiatry 24:145–161

    CAS  Google Scholar 

  • Anderson TH (2010) Sulphated glycerine, a new sequestrant and adjuvant for herbicide sprays. In: Baur P, Bonnet M (eds) Proceedings of the 9th international symposium on adjuvants for agrochemicals, Dynevo, Leverkusen, pp 301–306

    Google Scholar 

  • Annual Book of ASTM Standards (2006) Volume 11.04, E 1519-06a, ASTM International, West Conshohocken. www.astm.org

  • Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biomacromolecules 5:589–595

    CAS  Google Scholar 

  • Baker EA, Hayes AL, Butler RC (1992) Physicochemical properties of agrochemicals: their effects on foliar penetration. Pestic Sci 34:167–182

    CAS  Google Scholar 

  • Banduhn MC, Frazier HW (1978) G 3780A surfactant: biodegradation in nature waters. report no. MSL-0488. Monsanto Company, St. Louis

    Google Scholar 

  • Bauer H, Schönherr J (1992) Determination of mobilities of organic compounds in plant cuticles and correlation with molar volumes. Pestic Sci 35:1–11

    CAS  Google Scholar 

  • Bean M, Cutler J (2000) Agrochemical composition. EP Patent 1006792

    Google Scholar 

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1:54–60

    CAS  Google Scholar 

  • Behler A, Clasen F (2006) Method for the alkoxylation of alkyl/alkylene polyglycosides. EP Patent 1716163

    Google Scholar 

  • Beyers SW (1995) Acute toxicity of Rodeo® herbicide to Rio Grande silvery minnow as estimated by surrogate species: plains minnow and fathead minnow. Arch Environ Contam Toxicol 29:24–26

    CAS  Google Scholar 

  • Blair AM (1975) The addition of ammonium salt or phosphate ester to herbicides to control Agropyron repens (L) Beaux. Weed Res 15:101–105

    CAS  Google Scholar 

  • Bromilow RH, Chamberlain K (2000) The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Manag Sci 56:368–373

    CAS  Google Scholar 

  • Bromilow RH, Chamberlain K, Evans A (1990) Physicochemical aspects of phloem translocation of herbicides. Weed Sci 38:305–314

    CAS  Google Scholar 

  • Buchholz A, Peter B, Schönherr J (1998) Differences among plant species in cuticular permeabilities and solute mobilities are not caused by differential size selectivities. Planta 206:322–328

    CAS  Google Scholar 

  • Buhler DD, Burnside OC (1983a) Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci 31:163–169

    CAS  Google Scholar 

  • Buhler DD, Burnside OC (1983b) Effect of spray components on glyphosate toxicity to annual grasses. Weed Sci 35:124–130

    Google Scholar 

  • Buhler DD, Burnside OC (1987) Effects of application variables on glyphosate phytotoxicity. Weed Technol 1:14–17

    CAS  Google Scholar 

  • Burghardt M, Schreiber L, Riederer M (1998) Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J Agric Food Chem 46:1593–1602

    CAS  Google Scholar 

  • Burval J, Chan JH (1995) Liquid phytoactive compositions. US Patent 5 468 718

    Google Scholar 

  • Campbell P (2002) Alternatives to nonylphenol ethoxylates, Review of toxicity, biodegradation & technical-economic aspects. In: ToxEcology environmental consulting, Report for Environment Canada, Vancouver

    Google Scholar 

  • Cano ML, Dorn PB (1996) Sorption of two model alcohol ethoxylate surfactants to sediments. Chemosphere 33:981–994

    CAS  Google Scholar 

  • Casely JC, Coupland D (1985) Environmental and plant factors affecting glyphosate uptake, movement and activity. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworth and Co, London, pp 92–123

    Google Scholar 

  • Chefetz B (2003) Sorption of phenanthrene and atrazine by plant cuticular fractions. Environ Toxicol Chem 22:2492–2498

    CAS  Google Scholar 

  • Chellat F, Tabrizian M, Dumitriu S, Chornet E, Rivard CH, Yahia LH (2000) Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 53:592–599

    CAS  Google Scholar 

  • Chen B, Li Y (2007) Sorption of 1-naphthol by plant cuticular fractions. J Environ Sci 19:1214–1220

    CAS  Google Scholar 

  • Chen F, Wang Y, Zheng F, Wu Y, Liang W (2000) Studies on cloud point of agrochemical microemulsions. Colloids Surf A 175:257–262

    CAS  Google Scholar 

  • Chen B, Li Y, Guo Y, Zhu L, Schnoor JL (2008) Role of the extractable lipids and polymeric lipids in sorption of organic contaminants onto plant cuticles. Environ Sci Technol 42:1517–1523

    CAS  Google Scholar 

  • Contardo-Jara V, Klingelmann E, Wiegand C (2009) Bioaccumulation of glyphosate and its formulation Roundup® Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Pollut 157:57–63

    CAS  Google Scholar 

  • Cordiner JL (2004) Challenges for the PSE community in formulations. Comput Chem Eng 29:83–92

    CAS  Google Scholar 

  • Coret J, Chamel A (1995) Effects and possible mode of action of some nonionic surfactants on the diffusion of glyphosate and chlorotoluron across isolated plant cuticles. Pestic Sci 43:163–166

    CAS  Google Scholar 

  • Coupland D (1988) Factors affecting the phloem translocation of foliage applied herbicides. In: Aitken RK, Clifford DR (eds) British plant growth regulation 18. British Plant Growth Regulation Group Monograph, pp 85–112

    Google Scholar 

  • Crafts AS (1960) Evidence for hydrolysis of esters of 2,4-D during absorption by plants. Weeds 8:19–25

    CAS  Google Scholar 

  • Cranmer JR, Linscott DL (1990) Droplet makeup and the effect on phytotoxicity of glyphosate in velvetleaf (Abutilon theophrasti). Weed Sci 38:406–410

    CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    CAS  Google Scholar 

  • De Ruiter H, Uffing AJM, Meinen E, Prins A (1990) Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci 38:567–572

    Google Scholar 

  • De Ruiter H, Straatman K, Meinen E (1993) The influence of a fatty amine surfactant on foliar absorption and translocation of the trolamine salt and iso-octyl ester of 2,4-D. Pestic Sci 38:145–154

    Google Scholar 

  • De Ruiter H, Uffing AJM, Meinen E (1996) Influence of surfactants and ammonium sulfate on glyphosate phytotoxicity to quackgrass (Elytigia repens). Weed Technol 10:803–808

    Google Scholar 

  • Denis MH, Delrot S (1993) Carrier-mediated uptake of glyphosate in broad bean (Vicia faba) via a phosphate transporter. Physiol Plantar 87:569–575

    CAS  Google Scholar 

  • Denis MH, Delrot S (1997) Effects of salt and surfactants on foliar uptake and long distance transport of glyphosate. Plant Physiol Biochem 35:291–301

    CAS  Google Scholar 

  • Devine MD, Hall LM (1990) Implications of sucrose transport mechanisms for the translocation of herbicides. Weed Sci 38:299–304

    CAS  Google Scholar 

  • Dodds EC, Lawson W (1938) Molecular structure in relation to estrogenic activity: compounds without a phenanthrene nucleus. Proc R Soc Lond B Biol Sci 125:222–232

    CAS  Google Scholar 

  • Duncan Yerkes CN, Weller SC (1996) Diluent volume influences susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Technol 10:565–569

    Google Scholar 

  • Edser C (2007) Multifaceted role for surfactants in agrochemicals. Focus Surfact 3:1–2

    Google Scholar 

  • Feng PCC, Ryerse JS, Sammons RD (1998) Correlation of leaf damage with uptake and translocation of glyphosate in velvetleaf (Abutilon theophrasti). Weed Technol 12:300–307

    CAS  Google Scholar 

  • Feng PCC, Ryerse JS, Jones CR, Sammons RD (1999) Analysis of surfactant leaf damage using microscopy and its relation to glyphosate or deuterium oxide uptake in velvetleaf (Abutilon theophrasti). Pest Sci 55:385–386

    CAS  Google Scholar 

  • Feng PCC, Chiu T, Sammons RD, Ryerse JS (2003a) Droplet size affects glyphosate retention, absorption and translocation in corn. Weed Sci 51:443–448

    CAS  Google Scholar 

  • Feng PCC, Chiu T, Sammons RD (2003b) Glyphosate efficacy is contributed by its tissue concentration and sensitivity in velvetleaf (Abutilon theophrasti). Pest Biochem Physiol 77:83–91

    CAS  Google Scholar 

  • Fernández Cirelli A, Ojeda C, Castro MJL, Salgot M (2008) Surfactants in sludge- amended agricultural soils. A review. Environ Chem Lett 6:135–148

    Google Scholar 

  • Folmar LC, Sanders OH, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269–278

    CAS  Google Scholar 

  • Forgiarini A, Esquena J, Gonzalez C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076–2083

    CAS  Google Scholar 

  • Forster WA, Zabkiewicz JA, Riederer M (2004) Mechanisms of cuticular uptake of xenobiotics into living plants: 1. Influence of xenobiotic dose on the uptake of three model compounds, applied in the absence and presence of surfactants into Chenopodium album, Hedera helix and Stephanotis floribunda leaves. Pest Manage Sci 60:1105–1113

    CAS  Google Scholar 

  • Foy CL (1987) Adjuvants: terminology, classification, and mode of action. In: Chow PNP, Grant CA, Hinshalwood AM, Simundson E (eds) Adjuvants and agrochemicals. CRC Press, Boca Raton, pp 1–15

    Google Scholar 

  • Foy CL (1989) Adjuvants for agrochemicals: introduction, historical overview and future outlook. In: Chow PNP, Grant CA, Hinshalwood AM, Simundsson E (eds) Adjuvants and agrochemicals: II recent development, application, and bibliography of agro adjuvants. CRC Press, Boca Raton, pp 2–9

    Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. In: ACS monograph, vol. 189, American Chemical Society, Washington, DC, pp 163–175

    Google Scholar 

  • Gardner SC, Grue CE (1996) Effects of rodeo® and garlon 3A on nontarget wetland species in central Washington. Environ Toxicol Chem 15:441–451

    CAS  Google Scholar 

  • Garst R (1997) New solutions for agricultural applications. In: Hill K, Rybinski W, Stoll G (eds) Alkyl polyglycosides. VCH, Weinheim, pp 131–137

    Google Scholar 

  • Gednalske JV, Herzfeld RW (1994) Homogenous herbicidal adjuvant blend comprising glyphosate ammonium sulfate and alkyl polysaccharide. US Patent 5 356 861

    Google Scholar 

  • Geiger DR, Bestman HD (1990) Self-limitation of herbicide mobility by phytotoxic action. Weed Sci 38:324–329

    CAS  Google Scholar 

  • Geiger DR, Shieh WJ, Fuchs MA (1999) Causes of selflimited translocation of glyphosate in Beta vulgaris plants. Pest Biochem Physiol 64:124–133

    CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup® herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Giger W, Brunner PH, Schaffner C (1984) 4-Nonylphenol in sewage-sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225:623–625

    CAS  Google Scholar 

  • Goldsborough LG, Brown DJ (1993) Dissipation of glyphosate and aminomethylphosphonic acid in water and sediments of boreal forest ponds. Environ Toxicol Chem 12:1139–1147

    CAS  Google Scholar 

  • Gougler JA, Geiger DR (1984) Carbon partitioning and herbicide translocation in glyphosate treated sugar beet (Beta vulgaris). Weed Sci 32:546–551

    CAS  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    CAS  Google Scholar 

  • Harring T, Streibig JC, Husted S (1998) Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J Agric Food Chem 46:4406–4412

    CAS  Google Scholar 

  • Hartley GS, Brunskill RT (1958) Reflection of water droplets from surfaces. In: Danielli JF, Parkhurst KGA, Riddiford AC (eds) Surface phenomena in chemistry and biology. Pergamon Press, New York, pp 214–223

    Google Scholar 

  • Hartzler B (2001) Glyphosate- a review. Iowa State University, Ames, Iowa

    Google Scholar 

  • Heinemann A (2010) Megatrends in agriculture. In: Proceedings of the 8th international symposium on adjuvants for agrochemicals. ISAA Society, Freising, pp 19–20

    Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    CAS  Google Scholar 

  • Heldt N, Zhao J, Friberg S, Zhang Z, Slack G, Li Y (2000) Controlling the size of vesicles prepared from egg lecithin using a hydrotrope. Tetrahedron 56:6985–6990

    CAS  Google Scholar 

  • Henry CJ, Higgins KF, Buhl KJ (1994) Acute toxicity and hazard assessment of Rodeo, X-77 Spreader, and Chem-Trol to aquatic invertebrates. Arch Environ Contam Toxicol 27:392–399

    CAS  Google Scholar 

  • Hess FD, Foy CL (2000) Interaction of surfactants with plant cuticles. Weed Technol 14:807–813

    CAS  Google Scholar 

  • Hochberg EG (1996) The market for agricultural pesticide inert ingredients and adjuvants. In: Foy CL, Pritchard DW (eds) Pesticide formulation and adjuvant technology. CRC Press, Boca Raton, pp 203–208

    Google Scholar 

  • Holden WTC (1992) Future formulation trends – the likely impact of regulatory and legislative pressures. In: Brighton crop protection conference, vol. 11, BCPC, Brighton, pp 313–320

    Google Scholar 

  • Holloway PJ (1993) Structure and chemistry of plant cuticles. Pestic Sci 37:203–232

    Google Scholar 

  • Jeffree C (1996) Cuticles: an integrated functional approach. In: Kerstiens G (ed) Plant. BIOS scientific, Oxford

    Google Scholar 

  • Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202

    CAS  Google Scholar 

  • Jordan TN (1981) Effects of diluent volumes and surfactant on the phytotoxicity of glyphosate to bermuda grass (Cynodon dactylon). Weed Sci 29:79–83

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Kim Y-S, Katase T, Sekine S, Inoue T, Makino M, Uchiyama T, Fujimoto Y, Yamashita N (2004) Variation in estrogenic activity among fractions of a commercial nonylphenol by high performance liquid chromatography. Chemosphere 54:1127–1134

    CAS  Google Scholar 

  • Kindall HW, Pimentel D (1994) Constraints on the expansion of the global food supply. Ambio 23:198–205

    Google Scholar 

  • Kinnberg K, Korsgaard B, Bjerregaard P, Jespersen A (2000) Effects of nonylphenol and 17 beta-estradiol on vitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus. J Exp Biol 203:171–181

    CAS  Google Scholar 

  • Kirkwood RC (1999) Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci 55:69–77

    CAS  Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28:35–44

    Google Scholar 

  • Krogh PH, Holmstrup M, Petersen SO, Jensen J (1997) Ecotoxicological assessment of sewage sludge in agricultural soil. In: Danish ministry for the environment, The Environmental Protection Agency, working report No. 69

    Google Scholar 

  • Krogh KA, Halling-Sørensen B, Mogensen BB, Vejrup KV (2003) Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901

    CAS  Google Scholar 

  • Kumar MNVR, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohyd Polym 82:1136–1142

    CAS  Google Scholar 

  • Lasic DD (1993) Liposomes from physics to applications. Elsevier, Amsterdam, pp 507–516

    Google Scholar 

  • Laws SC, Carey SA, Ferrell JM, Bodman GJ, Cooper RL (2000) Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci 54:154–167

    CAS  Google Scholar 

  • Lee PC, Lee W (1996) In vivo estrogenic action of nonylphenol in immature female rats. Bull Environ Contam Toxicol 57:341–348

    CAS  Google Scholar 

  • Lee GWJ, Tadros TF (1982) Formation and stability of emulsions produced by dilution of emulsifiable concentrates. Part I. An investigation of the dispersion on dilution of emulsifiable concentrates containing cationic and non-ionic surfactants. Colloids Surf 5:105–115

    CAS  Google Scholar 

  • Lee JF, Liao PM, Kuo CC, Yang HT, Chiou CT (2000) Influence of a nonionic surfactant (Trion X-100) on contaminant distribution between water and several soil solids. J Colloid Interface Sci 229:445–452

    CAS  Google Scholar 

  • Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K (2003) Antiandrogenic effects of bisphenol a and nonylphenol on the function of androgen receptor. Toxicol Sci 75:40–46

    CAS  Google Scholar 

  • Lee JF, Hsu MH, Chao HP, Huang HC, Wang SP (2004) The effect of surfactants on the distribution of organic compounds in the soil solid/water system. J Hazard Mater 114:123–130

    CAS  Google Scholar 

  • Li Y, Chen B (2009) Phenanthrene sorption by fruit cuticles and potato periderm with different compositional characteristics. J Agric Food Chem 57:637–644

    CAS  Google Scholar 

  • Lindman B, Danielson I (1981) The definition of microemulsion. Colloid Surf 3:391–392

    Google Scholar 

  • Liu SH, Campbell RA, Studens JA, Wagner RG (1996) Absorption and translocation of glyphosate in aspen (Populus tremuloides Michx.) as influenced by droplet size, droplet number, and herbicide concentration. Weed Sci 44:482–488

    CAS  Google Scholar 

  • Mainx HG, Hofer P (2009) Alkylene oxide adducts of oligosaccharides. Patent WO 2009080215

    Google Scholar 

  • Malec, AD, Figley, TM, Turpin, KL (2009) Ultra-high loading glyphosate concentrate. US Patent 20090318294

    Google Scholar 

  • Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Belle R (2002) Pesticide Roundup® provokes cell division dysfunction at the level of CDK1/cyclin B activation. Chem Res Toxicol 15:326–331

    CAS  Google Scholar 

  • Martinez TT, Brown K (1991) Oral and pulmonary toxicology of the surfactant used in Roundup® herbicide. Proc West Pharmacol Soc 34:43–46

    CAS  Google Scholar 

  • Marvel JT, Brightwell BB, Suba L (1974) G 3780A surfactant: biodegradation, plant uptake, and 14C-distribution. In: Report 321, Monsanto Company, St. Louis

    Google Scholar 

  • May OL, Culpepper AS, Cerny RE, Coots CB, Corkern CB, Cothren JT, Croon KA, Ferreira KL, Hart JL, Hayes RM, Huber SA, Martens AB, McCloskey WB, Oppenhuizen ME, Patterson MG, Reynolds DB, Shappley ZW, Subramani J, Witten TK, York AC, Mullinix BG (2002) Transgenic cotton with improved resistance to glyphosate herbicide. Crop Sci 44:234–240

    Google Scholar 

  • McAllister RS, Haderlie LC (1985) Translocation of 14C-glyphosate and 14C-CO2-labeled photoassimilates in Canada thistle (Cirsium arvense). Weed Sci 33:153–159

    CAS  Google Scholar 

  • Mercer GN (2007) A simple diffusion model of the effect of droplet size and spread. Area on foliar uptake of hydrophilic compounds. Pest Biochem Physiol 88:128–133

    CAS  Google Scholar 

  • Minanaperez M, Gracia A, Lachaise J, Salager JL (1995) Solubilization of polar oils with extended surfactants. Colloid Surf A Physicochem Eng Asp 100:217–224

    CAS  Google Scholar 

  • Morin F, Vera V, Nurit F, Tissut M, Marigo G (1997) Glyphosate uptake in Catharanthus roseus cells: role of a phosphate transporter. Pest Biochem Physiol 58:13–22

    CAS  Google Scholar 

  • Muzik TJ (1976) Influence of environmental factors on toxicity to plants. In: Audus LJ (ed) Herbicides: physiology, biochemistry, ecology, 2nd edn. Academic, London, pp 203–247

    Google Scholar 

  • Nadler-Hassar T, Goldshmidt A, Rubin B, Wolf S (2004) Glyphosate inhibits the translocation of green fluorescent protein and sucrose from a transgenic tobacco host to Cuscuta campestris Yunk. Planta 219:790–796

    CAS  Google Scholar 

  • Nalewaja JD, Devilliers B, Matysiak R (1996) Surfactant and salt affect glyphosate retention and absorption. Weed Res 36:241–247

    CAS  Google Scholar 

  • Nickel D, Föster T, von Rybinski W (1996) Physicochemical properties of alkyl polyglycosides. In: Hill K, Rybinski W, Stoll G (eds) Alkyl polyglucosides. VCH, Weinheim, pp 39–69

    Google Scholar 

  • Odum J, Lefevre PA, Tittensor S, Paton D, Routledge EJ, Beresford NA, Sumpter JP, Ashby J (1997) The rodent uterotrophic assay: critical protocol features, studies with nonyl phenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:176–188

    CAS  Google Scholar 

  • Oparka KJ, Roberts AG (2001) Plasmodesmata. A not so open-and-shut case. Plant Physiol 125:123–126

    CAS  Google Scholar 

  • Paganelli A, Gnazzo V, Acosta H, Lopez SL, Carrasco A (2010) Glyphosate-based herbicides produce teretogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol 23:1586–1595

    CAS  Google Scholar 

  • Paveglio PL, Kilbride KM, Grue CE, Siemenstad CA, Fresh KL (1996) Use of Rodeo and X-77 spreader to control smooth cordgrass (Spartina alterniflora) in a southwestern Washington estuary: 1 environmental fate. Environ Toxicol Chem 15:961–968

    CAS  Google Scholar 

  • Peixoto F (2005) Comparative effects of the Roundup® and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61:1115–1122

    CAS  Google Scholar 

  • Perkins MC, Roberts CJ, Briggs D, Davies MC, Friedmann A, Hart C, Bell G (2005) Macro and microthermal analysis of plant wax/surfactant interactions: plasticizing effects of two alcohol ethoxylated surfactants on an isolated cuticular wax and leaf model. Appl Surf Sci 243:158–165

    CAS  Google Scholar 

  • Petracek PD, Fader RG, Knoche M, Bukovac MJ (1998) Surfactant-enhanced penetration of benzyladenine through isolated tomato fruit cuticular membranes. J Agric Food Chem 46:2346–2352

    CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching the target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticide use. Wiley, New York

    Google Scholar 

  • Pompeo MP, Mainx HG, Eskuchen R, Rosessing M, Abribat B (2005) APG Granules containing agrochemical active ingredients. US Patent 0,009,707

    Google Scholar 

  • Pons M, Estelrich J (1996) Liposomes as an agrochemical tool: optimization of their production. Ind Crop Prod 5:203–208

    CAS  Google Scholar 

  • Popp C, Burghardt M, Friedmann A, Riederer M (2005) Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: permeation of water and uncharged organic compounds. J Exp Bot 56:2797–2806

    CAS  Google Scholar 

  • Price CE (1976) Penetration and translocation of herbicides and fungicides in plants. In: McFarlane NR (ed) Herbicides and fungicides-factors affecting their activity, vol 29, The chemical society special publication. Chemical Society, London, pp 42–66

    Google Scholar 

  • Price CE (1983) The effect of environment on foliage uptake and translocation of herbicides. In: A.o.A. Biologists (ed) Aspects of applied biology 4: influence of environmental factors on herbicide performance and crop and weed biology, vol. 4, The Association of Applied Biologists, Warwick, pp 157–169

    Google Scholar 

  • Prince LM (1977) Microemulsion. Academic, London

    Google Scholar 

  • Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Höfte M, Steurbaut W, Smagghe G (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61:951–960

    CAS  Google Scholar 

  • Ramsey RJL, Stephenson GR, Hall JC (2005) A review of effects of humidity, humectants, and surfactants composition on the absorption and efficacy of highly water-soluble herbicides. Pest Biochem Physiol 82:162–175

    CAS  Google Scholar 

  • Reynhardt EC, Riederer M (1994) Structures and molecular dynamics of plant waxes. II Cuticular waxes from leaves of Fagus sylvatica L. and Hordeum vulgare L. Eur Biophys J 23:59–70

    CAS  Google Scholar 

  • Richard EP Jr, Slife FW (1979) In vivo and in vitro characterization of the foliar entry of glyphosate in hemp dogbane (Apocynum cannabinum). Weed Sci 27:426–433

    CAS  Google Scholar 

  • Riechers DE (1992) Surfactant effects on the plasma membrane as a mode of action in promoting glyphosate phytotoxicity. M.Sc. thesis, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Riechers DE, Wax LM, Liebl RA, Bush DR (1994) Surfactant-increased glyphosate uptake into plasma membrane vesicles isolated from common lambsquarters leaves. Plant Physiol 105:1419–1425

    Google Scholar 

  • Riechers DE, Wax LM, Liebl RA, Bullock DG (1995) Surfactant effects on glyphosate efficacy. Weed Technol 9:281–285

    CAS  Google Scholar 

  • Riederer M, Markstädter C (1996) Cuticular waxes: a critical assessment of current knowledge. In: Kerstiens G (ed) Plant cuticles – an integrated functional approach. Bios Scientific, Oxford, pp 189–200

    Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    CAS  Google Scholar 

  • Risbud MV, Bhonda RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75

    CAS  Google Scholar 

  • Roberts J (2010) Helena Chemical Company, Presentation to EPA

    Google Scholar 

  • Ryerse JS, Feng PCC, Sammons RD (2001) Endogenous fluorescence identifies dead cells in plants. Microsc Today 1:22–24

    Google Scholar 

  • Saito H, Shinoda K (1967) The solubilization of hydrocarbons in aqueous solutions of nonionic surfactants. J Colloid Interface Sci 24:10–15

    CAS  Google Scholar 

  • Santier S, Chamel A (1998) Reassessment of the role of cuticular waxes in the transfer of organic molecules through plant cuticles. Plant Physiol Biochem 36:225–231

    CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000a) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application I. Conceptual foundation for model development. Pestic Biochem Physiol 68:67–84

    CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2000b) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application II. Model validation. Pestic Biochem Physiol 68:85–95

    CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2001) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application III. Influence of chemical properties, plant characteristics, and environmental parameters on xenobiotic absorption and translocation. Pestic Biochem Physiol 71:77–87

    CAS  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM, Briskin DP (2006) A nonlinear, dynamic, simulation model for transport, and whole plant allocation of systemic xenobiotics following foliar application IV. Physiochemical properties requirements for optimum absorption and translocation. Pestic Biochem Physiol 84:83–97

    CAS  Google Scholar 

  • Schönherr J (2000) Calcium chloride penetrates plant cuticles via aqueous pores. Planta 212:112–118

    Google Scholar 

  • Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membrane. Pest Manag Sci 58:343–351

    Google Scholar 

  • Schönherr J, Schreiber L (2004) Size selectivity of aqueous pores in astomatous cuticular membranes isolated from Populus canescens (Aiton) Sm. leaves. Planta 219:405–411

    Google Scholar 

  • Schönherr J, Baur P, Buchholz A (1999) Modelling foliar penetration: its role in optimising pesticide delivery. In: Brooks GT, Roberst TR (eds) Pesticide chemistry and bioscience. Royal Society of Chemistry, Cambridge, pp 134–151

    Google Scholar 

  • Schönherr J, Baur P, Uhlig BA (2000) Rates of cuticular penetration of 1-naphthylacetic acid (NAA) as affected by adjuvants, temperature, humidity and water quality. Plant Growth Regul 31:61–74

    Google Scholar 

  • Schreiber L (1995) A mechanistic approach towards surfactant/wax interactions: effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pestic Sci 45:1–11

    CAS  Google Scholar 

  • Schreiber L (2006) Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on the solute mobilities. J Exp Bot 57:2515–2523

    CAS  Google Scholar 

  • Servizi JA, Gordon RW, Martens DW (1987) Acute toxicity of Garlon 4 and Roundup® herbicides to Salmon, Daphnia, and trout. Bull Environ Contam Toxicol 39:15–22

    CAS  Google Scholar 

  • Sharma SD, Kirkwood RC, Whateley T (1996) Effect of nonionic nonylphenol surfactants on surface physiological properties, uptake and distribution of asulam and diflufenican. Weed Res 36:227–239

    CAS  Google Scholar 

  • Sherrick SL, Holt HA, Hess FD (1986) Absorption and translocation of MON 0818 adjuvant in field bindweed (Convolvulus amcnsis). Weed Sci 34:817–823

    CAS  Google Scholar 

  • Soares A, Vijayram IA, Guieysse B, Murto M, Guieysse B, Mattiasson B (2005) Degradation of non-ionic surfactants under anaerobic conditions. In: Rittmann BE, van Loosdrecht MCM (eds) Third IWA leading-edge conference on water and wastewater treatment technologies. IWA Publishing, Sapporo

    Google Scholar 

  • Solel Z, Edgington LV (1973) Transcuticular movement of fungicides. Phytopathology 63:505–510

    CAS  Google Scholar 

  • Soto AM, Justicia H, Wray JW, Sonnenschein C (1991) P-Nonylphenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–173

    CAS  Google Scholar 

  • Stephenson DO, Patterson MG, Faircloth WH, Lunsford JN (2004) Weed management with fomesafen preemergence in glyphosate-resistant cotton. Weed Technol 18:680–686

    CAS  Google Scholar 

  • Stevens PJG, Bukovac MJ (1987) Studies on octylphenoxy surfactants. Part 1: effects of oxyethylene content on properties of potential relevance to foliar absorption. Pestic Sci 20:9–35

    Google Scholar 

  • Stevens PJG, Baker EA, Anderson NH (1988) Factors affecting the foliar absorption and redistribution of pesticides. 2. Physicochemical properties of the active ingredient and the role of surfactant. Pestic Sci 24:31–53

    CAS  Google Scholar 

  • Stewart WN (1993) Paleobotany and the evolution of plants, Secondth edn. Cambridge University Press, New York, 405

    Google Scholar 

  • Stock D, Holloway PJ (1993) Possible mechanisms for surfactant-induced foliar uptake of agrochemicals. Pestic Sci 38:165–177

    CAS  Google Scholar 

  • Stock D, Edgerton BM, Gaskin RE, Holloway PJ (1992) Surfactant enhanced foliar uptake of some organic compounds: interactions with two model polyoxyethylene aliphatic alcohols. Pestic Sci 34:233–242

    CAS  Google Scholar 

  • Stock D, Holloway PJ, Grayson BT, Whitehouse P (1993) Development of a predictive uptake model to rationalise selection of polyoxyethylene surfactant adjuvants for foliage applied agrochemicals. Pestic Sci 37:233–245

    CAS  Google Scholar 

  • Strey R (1996) Water – nonionic surfactant – systems, and the effect of additives. Berich Bunsen Gesell Phys Chem Chem Phys 100:182–189

    CAS  Google Scholar 

  • Tabata A, Kashiwada S, Ohnishi Y, Ishikawa H, Miyamoto N, Itoh M, Magara Y (2001) Estrogenic influences of estradiol-17 beta, p-nonylphenol and bis-phenol-A on Japanese Medaka (Oryzias latipes) at detected environmental concentrations. Water Sci Technol 43:109–116

    CAS  Google Scholar 

  • Tabira Y, Nakai M, Asai D, Yakabe Y, Tahara Y, Shinmyozu T, Noguchi M, Takatsuki M, Shimohigashi Y (1999) Structural requirements of para-alkylphenols to bind to estrogen receptor. Eur J Biochem 262:240–245

    CAS  Google Scholar 

  • Tadros TF (1994) Surfactants in agrochemicals. Marcel Dekker, New York

    Google Scholar 

  • Tadros TF (2005) Applications of surfactants in agrochemicals. In: Applied surfactants: principles and application. Wiley-VCH, Weinheim, pp 503–592

    Google Scholar 

  • Tamura H, Knoche M, Bukovac MJ (2001) Evidence for surfactant solubilization of plant epicuticular wax. J Agric Food Chem 48:1809–1816

    Google Scholar 

  • Thomas BA, Spicer RA (1987) The evolution and paleobiology of land plants, vol 2, Ecology, phytogeography and physiology series. Croom Helm, London, pp 309

    Google Scholar 

  • Tice CM (2001) Selecting the right compounds for screening: does Lipinski’s rule of 5 for pharmaceuticals apply to agrochemicals. Pest Manag Sci 57:3–16

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  Google Scholar 

  • Tominack RL (2000) Herbicide formulations. J Toxicol Clin Toxicol 38:129–135

    CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    CAS  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    CAS  Google Scholar 

  • Tu M, Hurd C, Randall JM (2003) Weed control methods handbook, The Nature Conservancy, Utah State University, Utah

    Google Scholar 

  • Urano K, Saito M, Murata C (1984) Adsorption of surfactants on sediments. Chemosphere 12:293–300

    Google Scholar 

  • van Ginkel CG, Stroo CA, Kroon AGM (1993) Biodegradability of ethoxylated fatty amines: detoxification through a central fission of these surfactants. Sci Total Environ 134:689–697

    Google Scholar 

  • Wade BR, Riechers DE, Libel RA, Wax LM (1993) The plasma membrane as a barrier to herbicide penetration and site for adjuvant action. Pestic Sci 37:195–202

    CAS  Google Scholar 

  • Wan Kim T, Amrhein N (1995) Glyphosate toxicity: long-term analysis of shikimic acid accumulation and chlorophyll degradation in tomato plants. Kor J Weed Sci 15:141–147

    Google Scholar 

  • Wan MT, Watts RG, Moul DJ (1989) Effects of different dilution water types on the acute toxicity to juvenile Pacific salmon and rainbow trout of glyphosate and its formulated products. Bull Environ Contam Toxicol 43:378–385

    CAS  Google Scholar 

  • Wang CJ, Liu ZQ (2007) Foliar uptake of pesticides – present status and future challenge. Pest Biochem and Physiol 87:1–8

    Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    CAS  Google Scholar 

  • White R, Jobling S, Hoare SA, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup® and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    CAS  Google Scholar 

  • Wills GD, McWhorter CG (1988) Absorption and translocation of herbicides effect of environment, adjuvants, and inorganic salts, pesticide formulations. In: Chapter 8, ACS symposium series, Vol 371, American Chemical Society, Washington, pp 90–101

    Google Scholar 

  • Woodburn A (2000) Glyphosate: production, pricing and use worldwide. Pest Manage Sci 56:309–312

    CAS  Google Scholar 

  • Wyrill JB, Burnside OC (1976) Absorption, translocation, and metabolism of 2,4-D and glyphosate in common milkweed and hemp dogbane. Weed Sci 24:557–566

    CAS  Google Scholar 

  • Yoshihara K, Ohshima H, Momozawa N, Sakai H, Abe M (1995) Binding constants of symmetric or antisymmetric electrolytes and aggregation numbers of oil-in-water type microemulsions with a nonionic surfactant. Langmuir 11:2979–2984

    CAS  Google Scholar 

  • Zabkiewicz JA (2000) Adjuvants and herbicidal efficacy – present status and future prospects. Weed Res 40:139–149

    CAS  Google Scholar 

  • Zabkiewicz JA (2003) Foliar interactions and uptake of agrichemical formulations – present limits and future potential. In: Voss G, Ramos G (eds) Chemistry of crop protection. Wiley VCH, Weinheim, pp 237–251

    Google Scholar 

  • Zabkiewicz JA (2007) Spray formulation efficacy – holistic and futuristic perspectives. Crop Prot 26:312–319

    Google Scholar 

  • Zhang C, Ping QN, Zhang H, Shen J (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohyd Polym 54:137–141

    CAS  Google Scholar 

  • Zhang C, Qu GW, Sun YJ, Wu XL, Yao Z, Guo QL, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H (2008) Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulphate chitosan micelles loaded with paclitaxel. Biomaterials 29:1233–1241

    CAS  Google Scholar 

  • Zhu L, Chen B, Tao S (2004) Sorption behavior of polycyclic aromatic hydrocarbons in soil-water system containing nonionic surfactant. Environ Eng Sci 21:263–272

    CAS  Google Scholar 

  • Zhu H, Yu Y, Ozkan HE, Derksen RC, Krause CR (2008) Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces. Commun Agric Appl Biol Sci 73:711–718

    CAS  Google Scholar 

  • Zoller U (2009) Handbook of detergents. Part F: production, vol 142, Surfactant science series. Taylor and Francis Group, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Fernández Cirelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castro, M.J.L., Ojeda, C., Cirelli, A.F. (2013). Surfactants in Agriculture. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Green Materials for Energy, Products and Depollution. Environmental Chemistry for a Sustainable World, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6836-9_7

Download citation

Publish with us

Policies and ethics