Skip to main content

Bryozoan Constructions in a Changing Mediterranean Sea

  • Chapter
  • First Online:
The Mediterranean Sea

Abstract

Bryozoans in the Mediterranean Sea are recognized as bioconstructional framework builders, both primary builders that construct frameworks alone or in combination with other organisms, or secondary builders that play various functional roles. Ten bryozoan species or complexes of species in the Mediterranean are responsible for providing habitats for diverse species and assemblages, thus playing important roles in promoting biodiversity and habitat heterogeneity. Four habitat-forming bryozoans respond to climatic changes (global warming and ocean acidification) by altering their colony growth, zooidal morphology and development, skeletal mineralogy and geochemistry. Under conditions of reduced pH, these species reallocate energy resources within the colony by regulating zooid size, proportion of polymorphs, number of zooidal generations, colony growth rate, and investment in the organic components involved in biomineralizational processes. Mediterranean ‘bryo-constructions’ are suitable ‘ecosystem models’ to be monitored in the context of climate change, especially ocean acidification and warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson D (1994) Temperature and organism size—a biological law for ectotherms? Adv Ecol Res 25:1–57

    Article  Google Scholar 

  • Barnes DKA (1995) Seasonal and annual growth in erect species of Antarctic bryozoans. J Exp Mar Biol Ecol 188:181–198

    Article  Google Scholar 

  • Bayhan E, Ergin M, Temel A, Keskin S (2001) Sedimentology and mineralogy of superficial bottom deposits from Aegean-Canakkale-Marmare transition (Eastern Mediterranean): effects of marine and terrestrial factors. Mar Geol 175:297–315

    Article  CAS  Google Scholar 

  • Bone Y, James NP (1993) Bryozoans as carbonate sediment producers on the cool-water Lancepede Shelf, southern Australia. Sediment Geol 86:247–271

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Charbonnel E, Carnus F, Ruitton S, Le Direac’h L, Harmelin J-G, Beurois J (2011) Artificial reefs in Marseille: from complex natural habitats to concepts of efficient artificial reef design. In: Ceccaldi HJ, Dekeyser I, Girault M, Stora G (eds) Global change: mankind-marine environment interactions. Springer, Dordrecht

    Google Scholar 

  • Cigliano M, Cocito S, Gambi MC (2007) Epibiosis of Calpensia nobilis (Esper)(Bryozoa: Cheilostomida) on Posidonia oceanica (L.) Delile rhizomes: effects on borer colonization and morpho-chronological features of the plant. Aquat Bot 86:30–36

    Article  Google Scholar 

  • Cocito S (2004) Bioconstruction and biodiversity: their mutual influence. Sci Mar 68:137–144

    Article  Google Scholar 

  • Cocito S, Ferdeghini F (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45:25–30

    Article  Google Scholar 

  • Cocito S, Ferdeghini F, Morri C, Bianchi CN (2000) Patterns of bioconstruction in the cheilostome bryozoan Schizoporella errata: the influence of hydrodynamics and associated biota. Mar Ecol Prog Ser 192:153–161

    Article  Google Scholar 

  • Cocito S, Novosel M, Novosel A (2004) Carbonate bioformations around underwater freshwater springs in the north-eastern Adriatic Sea. Facies 50:13–17

    Article  Google Scholar 

  • Cocito S, Lombardi C, Ciuffardi F, Gambi MC (2012) Colonization of Bryozoa on seagrass Posidonia oceanica ‘mimics’: biodiversity and recruitment pattern over time. Mar Biodiv 42:189–201

    Article  Google Scholar 

  • Crowley SF, Taylor PD (2000) Stable isotope composition of modern bryozoan skeletal carbonate formation from the Otago Shelf, New Zealand. NZ J Mar Freshwat Res 34:331–351

    Article  Google Scholar 

  • Duncan H (1957) Bryozoans. Geol Soc Am Mem 67:783–799

    Article  Google Scholar 

  • Fagerstrom JA (1991) Reef-building guilds and a checklist for determining guild. Coral Reefs 10:47–52

    Article  Google Scholar 

  • Feeley RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  Google Scholar 

  • Ferdeghini F, Cocito S (1999) Biologically generated diversity in two bryozoan buildups. Biol Mar Mediterr 6:191–197

    Google Scholar 

  • Ferdeghini F, Cocito S, Azzaro L, Sgorbini S, Cinelli F (2001) Bryozoan bioconstructions in the coralligenous formations of S.M. Leuca (Apulia, Italy). Biol Mar Mediterr 8:238–245

    Google Scholar 

  • Fornos JJ, Ahr WM (2006) Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy textural variation along a low energy isolated ramp. Geol Soc London 255:71–84

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Fine M, Turner SM, Tedesco D, Buia M-C (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  CAS  Google Scholar 

  • Hageman SJ, Bock PE, Bone Y, McGowran B (1998) Bryozoan growth habits: classification and analysis. J Paleo 72:418–436

    Google Scholar 

  • Hageman SJ, Lukasik J, McGowran B, Bone Y (2003) Paleoenvironmental significance of Celleporaria (Bryozoa) from modern and tertiary cool-water carbonates of southern Australia. Palaios 18:510–527

    Article  Google Scholar 

  • Harmelin J-G (1985) Bryozoan dominated assemblages in Mediterranean cryptic environments. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to recent. Olsen and Olsen, Fredensborg

    Google Scholar 

  • Harmelin JG, Capo S (2001) Effects of sewage on bryozoan diversity in Mediterranean rocky bottoms. In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies. A.A. Balkema Publishers, Lisse

    Google Scholar 

  • Hayward PJ, McKinney FK (2002) Northern Adriatic Bryozoa from the vicinity of Rovinj, Croatia. Bull Am Mus Nat Hist 270:1–139

    Article  Google Scholar 

  • Hayward PJ, Ryland JS (1999) Cheilostomatous Bryozoa, part 2: Hippothooidea–Celleporoidea. In: Barnes RSK, Crothers JH (eds) Synopses of the British Fauna (New Series). Field Studies Council, Shrewsbury

    Google Scholar 

  • Hunter E, Hughes RN (1994) The influence of temperature, food ratio and genotype on zooid size in Celleporella hyalina (L.). In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of bryozoans. Olsen and Olsen, Fredensborg

    Google Scholar 

  • Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 111:743–747

    Article  Google Scholar 

  • Jackson JBC (1985) Distribution and ecology of clonal and aclonal benthic invertebrates. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven

    Google Scholar 

  • James NP, Bone Y (2010) Neritic carbonate sediments in a temperate realm. Springer, Dordrecht

    Google Scholar 

  • Knowles T, Leng MJ, Williams M, Taylor PD, Okamura B (2010) Interpreting seawater temperature range using oxygen isotopes and zooid size variation in Pentapora foliacea (Bryozoa). Mar Biol 157:1171–1180

    Article  CAS  Google Scholar 

  • Kocak F, Balduzzi A, Benli HA (2002) Epiphytic bryozoan community of Posidonia oceanica (L.) Delile meadow in the northern Cyprus (Eastern Mediterranean). Indian J Mar Sci 31:235–238

    Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC (2012) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Chan. doi:10.1038/nclimate1680

    Google Scholar 

  • Kuklinski P, Taylor PD (2009) Mineralogy of Arctic bryozoan skeleton in a global context. Facies 55:333–342

    Article  Google Scholar 

  • Laborel J (1987) Marine biogenic constructions in the Mediterranean. A review. Sci Rep Port-Cros Natl Park 13:97–126

    Google Scholar 

  • Lombardi C, Cocito S, Occhipinti-Ambrogi A, Hiscock K (2006) The influence of temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar Biol 149:1103–1109

    Article  Google Scholar 

  • Lombardi C, Cocito S, Occhipinti-Ambrogi A, Porter JS (2008a) Distribution and morphological variation of colonies of the bryozoan Pentapora fascialis (Bryozoa: Cheilostomata) along the western coast of Italy. J Mar Biol Ass UK 88:711–717

    Google Scholar 

  • Lombardi C, Cocito S, Hiscock K, Occhipinti-Ambrogi A, Setti M, Taylor PD (2008b) Influence of seawater temperature on growth bands, mineralogy and carbonate production in a bioconstructional bryozoan. Facies 54:333–342

    Article  Google Scholar 

  • Lombardi C, Rodolfo-Metalpa R, Cocito S, Gambi MC, Taylor PD (2011a) Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Mar Ecol 32:211–222

    Article  Google Scholar 

  • Lombardi C, Rodolfo-Metalpa R, Silvia C, Gambi MC, Taylor PD (2011b) Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryozoan Myriapora truncata. Aquat Biol 13:251–262

    Article  Google Scholar 

  • Lombardi C, Cocito S, Gambi MC, Cisterna B, Flach F, Taylor PD, Keltie K, Freer A, Cusack M (2011c) Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryozoan Myriapora truncata. Aquat Biol 13:251–262

    Article  Google Scholar 

  • Lowenstam HA (1954) Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc Natl Acad Sci USA 40:39–48

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Lutaud G (1987) The construction of cuticle and early stages of calcification in the zooidal bud of malacostegans. In: Ross JRP (ed) Bryozoa: present and past. Western Washington University, Bellingham

    Google Scholar 

  • Maluquer P (1985) Algunas consideraciones sobre la fauna asociada a las colonias de Schizoporella errata (Waters, 1878) del puerto de Mahón (Menorca, Baleares). Publ Dept Zool Univ Barcelona 11:23–28

    Google Scholar 

  • McKinney FK, Jackson JBC (1989) Bryozoan evolution. Chicago University Press, Chicago

    Google Scholar 

  • McKinney FK, Jaklin A (2000) Spatial niche partitioning in the Cellaria meadow epibiont association, northern Adriatic Sea. Cah Biol Mar 41:1–17

    Google Scholar 

  • Menon NR (1972) Heat tolerance, growth and regeneration in the three North Sea bryozoans exposed to different constant temperatures. Mar Biol 15:1–11

    Article  Google Scholar 

  • Moissette P, Cornée JJ, Koskeridou E (2010) Pleistocene rolling stones or large bryozoan nodules in a mixed silicilastic-carbonate environment (Rhodes, Greece). Palaios 25:24–39

    Article  Google Scholar 

  • Montañez IP (2002) Biological skeletal carbonate records changes in major ion chemistry of paleo-oceans. Proc Natl Acad Sci USA 99:15852–15854

    Article  Google Scholar 

  • Morgado EH, Tanaka MO (2001) The macrofauna associated with the bryozoan Schizoporella errata (Walters) in southeastern Brazil. Sci Mar 65:173–181

    Article  Google Scholar 

  • Morse JW, Wang Q, Tsio MY (1997) Influence of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87

    Article  CAS  Google Scholar 

  • Morse JW, Arvidson RS, Luttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  CAS  Google Scholar 

  • Mustapha BK, Komatsu T, Hattour A, Sammari CH, Zarrouk S (2002) Bionomie des étages infra et circalittoral du golfe de Gabès. Bull Inst Natl Sci Tech Mer Salammbò 29:1–16

    Google Scholar 

  • Novosel M (2005) Bryozoans of the Adriatic Sea. Denisia 16:231–246

    Google Scholar 

  • Novosel M, Olujic G, Cocito S, Pozar-Domac A (2004) Submarine freshwater springs in the Adriatic Sea: a unique habitat for the bryozoan Pentapora fascialis. In: Moyano HI, Cancino JM, Wyse Jackson PN (eds) Bryozoan studies. A.A. Balkema Publishers, Lisse

    Google Scholar 

  • O’Dea A (2005) Zooid size parallels contemporaneous oxygen isotopes in a large colony of Pentapora foliacea (Bryozoa). Mar Biol 146:1075–1081

    Article  Google Scholar 

  • O’Dea A, Okamura B (1999) Influence of seasonal variation in temperature, salinity and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati. Mar Biol 135:581–588

    Article  Google Scholar 

  • Okamura B (1985) The effects of ambient flow velocity, colony size, and upstream colonies on the feeding success of Bryozoa. Il Conopeum reticulum (Linnaeus), an encrusting species. J Exp Mar Biol Ecol 89:69–80

    Article  Google Scholar 

  • Okamura B (1987) Seasonal change in zooids size and feeding activity in epifaunal colonies of Electra pilosa. In: Ross JP (ed) Bryozoa: present and past. Western Washington University, Bellingham

    Google Scholar 

  • Okamura B, O’Dea A, Knowles T (2011) Bryozoan growth and environmental reconstruction by zooid size variation. Mar Ecol Prog Ser 430:133–146

    Article  Google Scholar 

  • Patzold J, Ristedt H, Wefer G (1987) Rate of growth and longevity of a large colony of Pentapora foliacea (Bryozoa) recorded in their oxygen isotopes profiles. Mar Biol 96:535–538

    Article  Google Scholar 

  • Poluzzi A, Coppa MG (1991) Zoarial strategies to win substratum space in Calpensia nobilis (Esper). In: Bigey FP (ed) Bryozoaires actuels et fossiles: Bryozoa Living and Fossil. Société des Sciences Naturelles de l'Ouest de la France, Nantes

    Google Scholar 

  • Poluzzi A, Sartori R (1973) Carbonate mineralogy of some Bryozoa from Talbot shoal (Strait of Sicily, Mediterranean). Gior Geol 39:11–25

    Google Scholar 

  • Poluzzi A, Sartori R (1974) Report on the carbonate mineralogy of bryozoans. In: Pouyet S (ed) Bryozoa. Documents des Laboratoires de Géologie, Lyon

    Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer J, Gambi MC (2010) Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456

    CAS  Google Scholar 

  • Romero Colmenero L, Sanchez Lizaso JL (1999) Effects of Calpensia nobilis (Esper 1796) (Bryozoa: Cheilostomida) on the seagrass Posidonia oceanica (L.). Delile. Aquat Bot 62:217–223

    Article  Google Scholar 

  • Rosso A (2003) Bryozoan diversity in the Mediterranean sea. Biogeographia 24:227–250

    Google Scholar 

  • Rucker JB, Carver RE (1969) A survey of the carbonate mineralogy of cheilostome Bryozoa. J Paleontol 43:791–799

    Google Scholar 

  • Sabine CL, Feeley RA, Gruber N, Key RM, Lee K, Bullistar JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Sala E, Garrabou J, Zabala M (1996) Effects of diver frequentation on Mediterranean sublittoral populations of the bryozoan Pentapora fascialis. Mar Biol 126:451–459

    Article  Google Scholar 

  • Sarà M (1969) Research on coralligenous formations: problems and perspectives. Pubbl Staz Zool Napoli 37:124–134

    Google Scholar 

  • Skinner HCW, Jahren AH (2003) Biomineralization. In: Schlesinger WH (ed) Treatise on geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Smith AM (2009) Bryozoans as southern sentinels of ocean acidification: a major role for a minor phylum. Mar Freshw Res 60:475–482

    Article  CAS  Google Scholar 

  • Smith AM, Key MM Jr (2004) Controls, variation, and a record of climate change in detailed stable isotope record in a single bryozoan skeleton. Quat Res 61:123–133

    Article  CAS  Google Scholar 

  • Smith AM, Nelson CS, Spencer HG (1998) Skeletal carbonate mineralogy of New Zealand bryozoans. Mar Geol 151:27–46

    Article  CAS  Google Scholar 

  • Smith AM, Stewart B, Key MM Jr, Jamet CM (2001) Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Palaeogeo Palaeoclim Palaeoecol 175:201–210

    Article  Google Scholar 

  • Smith AM, Key MM Jr, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306

    Article  Google Scholar 

  • Stanley SM, Hardie LA (1998) Secular oscillations in carbonate mineralogy of reef-building and sediment producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeo Palaeoclim Palaeoecol 144:3–19

    Article  Google Scholar 

  • Stebbing ARD (1971) Growth of Flustra foliacea (Bryozoa). Mar Biol 9:267–273

    Article  Google Scholar 

  • Tavener-Smith R, Williams A (1972) The secretion and structure of the skeleton of living and fossil Bryozoa. Philos Trans R Soc Lond B-Biol Sci 264:97–160

    Article  Google Scholar 

  • Taylor PD (1990) Preservation of soft-bodied and other organisms by bioimmuration: a review. Paleontol J 33:1–17

    CAS  Google Scholar 

  • Taylor PD (1994) An early cheilostome bryozoan from the Upper Jurassic of Yemen. N Jb Geol Paläont Abh 191:331–344

    Google Scholar 

  • Taylor PD (2000) Origin of the modern bryozoan fauna. In: Culver SJ, Rawson PF (eds) Biotic Response to Global Change. The Last 145 Million Years. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor PD (2005) Bryozoans. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopaedia of geology. Elsevier, Amsterdam

    Google Scholar 

  • Taylor PD, Allison PA (1998) Bryozoan carbonates in space and time. Geology 26:459–462

    Article  CAS  Google Scholar 

  • Taylor PD, Ernst A (2004) Bryozoans. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Taylor PD, Kudryavtsev AB, Schopf JW (2008) Calcite and aragonite distributions in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invertbr Biol 127:87–97

    Article  Google Scholar 

  • Taylor PD, James NP, Bone Y, Kuklinski P, Kyser TK (2009) Evolving mineralogy of cheilostome bryozoans. Palaios 24:440–452

    Article  Google Scholar 

  • Templado J, Calvo M, Garcia Carrascosa AM, Boisset F, Jimenez J (2002) Flora y fauna de la reserve marina de las Islas Columbretes. Museo Nacional Ciencias Naturales, Madrid

    Google Scholar 

  • Thompson RC, Wilson BJ, Tobin ML, Hill AS, Hawkins AJ (1996) Biologically generated habitat provision and diversity of rocky shore organisms at a hierarchy of spatial scale. J Exp Mar Biol Ecol 202:73–84

    Article  Google Scholar 

  • Waeschenbach A, Taylor PD, Littlewood DTJ (2012) A molecular phylogeny of bryozoans. Molecular Phylogenetics Evoln 62:718–735

    Google Scholar 

  • Winston JE (1983) Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bull Mar Sci 33:688–702

    Google Scholar 

  • Wood ACL, Probert PK, Rowden AA, Smith AM (2012) Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquat Conservat Mar Freshwat Ecosyst 22:547–563

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank J.-G. Harmelin (Marseille), M. Novosel (Zagreb) and L. Mizzan (Venice) for providing information and literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lombardi, C., Taylor, P.D., Cocito, S. (2014). Bryozoan Constructions in a Changing Mediterranean Sea. In: Goffredo, S., Dubinsky, Z. (eds) The Mediterranean Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_21

Download citation

Publish with us

Policies and ethics