Skip to main content

Part of the book series: Topics in Applied Physics ((TAP,volume 127))

Abstract

This chapter provides the context for the book in relation to the rest of the optical metamaterials community. First, a brief historical overview of optical metamaterial developments up to the start of the twentieth century is given. This is followed by a discussion of the field in relation to academic publications, nanofabrication, and electromagnetic simulations; and how developments in all three areas have contributed to the field as we know it today. The last section of the chapter presents the general framework for combining numerical optimization methods with full-field electromagnetic simulations for the design of metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Citations compiled through Web of Science, March 2012.

  2. 2.

    Figure 1.5(b) was produced using the resources of MIT Lincoln Laboratory.

  3. 3.

    Figure 1.6 was produced using the resources of MIT Lincoln Laboratory.

  4. 4.

    Figure 1.7 was produced using the resources of MIT Lincoln Laboratory.

  5. 5.

    Figure 1.8 was produced using the resources of MIT Lincoln Laboratory.

References

  1. Comparing continuous optimisers: Coco. http://coco.gforge.inria.fr/doku.php?id=start

  2. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole, Pacific Grove, 1976)

    Google Scholar 

  3. J.P. Ballantyne, Mask fabrication by electron-beam lithography, in Electron-Beam Technology in Microelectronic Fabrication, ed. by G.R. Brewer (Academic Press, New York, 1980), pp. 259–307

    Google Scholar 

  4. D.J. Barber, I.C. Freestone, An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32, 33–45 (1990)

    Article  Google Scholar 

  5. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. M.G. Blaber, M.D. Arnold, M.J. Ford, Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J. Phys. Condens. Matter 21, 144211 (2009)

    Article  ADS  Google Scholar 

  7. A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)

    Article  ADS  Google Scholar 

  8. J.C. Bose, On the rotation of plane polarization of electric waves by a twisted structure. Proc. R. Soc. Lond. 63, 146–152 (1898)

    Article  Google Scholar 

  9. W. Cai, U.K. Chettiar, H.K. Yuan, V.C. de Silva, A.K. Sarychev, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors. Opt. Express 15(6), 3333–3341 (2007)

    Article  ADS  Google Scholar 

  10. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2010)

    Google Scholar 

  11. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1(4), 224–227 (2007)

    Article  ADS  Google Scholar 

  12. Y.F. Chen, J.R. Tao, X.Z. Zhao, Z. Cui, A.S. Schwanecke, N.I. Zheludev, Nanoimprint lithography for planar chiral photonics meta-materials. Microelectron. Eng. 78–79, 612–617 (2005)

    Article  Google Scholar 

  13. B.R. Cooper, H. Ehrenreich, H.R. Philipp, Optical properties of Nobel metals 2. Phys. Rev. 138, 494–507 (1965)

    Article  ADS  Google Scholar 

  14. R.L. Courant, Variational methods for the solution of problems of equilibrium and vibration. Bull. Am. Math. Soc. 49, 1–23 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004)

    Article  ADS  Google Scholar 

  16. K. Diest, Active metal–insulator–metal plasmonic devices. Ph.D. thesis, California Institute of Technology, September 2012

    Google Scholar 

  17. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 1698–1702 (2007)

    Article  ADS  Google Scholar 

  18. N. Engheta, A. Salandrino, A. Alu, Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005)

    Article  ADS  Google Scholar 

  19. N. Engheta, R.W. Ziolkowski, Metamaterials: Physica and Engineering Explorations (IEEE Press, New York, 2006)

    Book  Google Scholar 

  20. C. Enkrich, R. Perez-Willard, D. Gerthsen, J.F. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17, 2547–2549 (2005)

    Article  Google Scholar 

  21. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328(5976), 337–339 (2010)

    Article  ADS  Google Scholar 

  22. W.H. Escovitz, T.R. Fox, R. Levi-Setti, Scanning-transmission ion-microscope with a field-ion source. Proc. Natl. Acad. Sci. USA 72(5), 1826–1828 (1975)

    Article  ADS  Google Scholar 

  23. E. Feigenbaum, K. Diest, H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett. 10, 2111–2116 (2010)

    Article  ADS  Google Scholar 

  24. J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904)

    Article  ADS  MATH  Google Scholar 

  25. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170–1172 (2000)

    Article  ADS  Google Scholar 

  26. L. Greengard, V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. L.J. Guo, Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007)

    Article  Google Scholar 

  28. M. Hatzakis, Electron resists for microcircuit and mask production. J. Electrochem. Soc. 116, 1033–1037 (1969)

    Article  Google Scholar 

  29. M.D. Henry, M.J. Shearn, B. Chhim, A. Scherer, Ga+ beam lithography for nanoscale silicon reactive ion etching. Nanotechnology 21, 245303 (2010)

    Article  ADS  Google Scholar 

  30. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6(12), 946–950 (2007)

    Article  ADS  Google Scholar 

  31. J. ibn Hayyan, The Book of the Hidden Pearl

    Google Scholar 

  32. M. Jablan, H. Buljan, M. Soljacic, Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  33. J.M. Jin, The Finite Element Method in Electromagnetics, 2nd edn. (Wiley, Hoboken, 2002)

    MATH  Google Scholar 

  34. J.M. Jin, D.J. Riley, Finite Element Analysis of Antennas and Arrays (Wiley-IEEE Press, Hoboken, 2009)

    Google Scholar 

  35. D.S. Katz, E.T. Thiele, A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD–TD meshes. IEEE Microw. Guided Wave Lett. 4(8), 268–270 (1994)

    Article  Google Scholar 

  36. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313(5786), 502–504 (2006)

    Article  ADS  Google Scholar 

  37. M.W. Klein, M. Wegener, N. Feth, S. Linden, Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15(8), 5238–5247 (2007)

    Article  ADS  Google Scholar 

  38. A.L. Koh, A.I. Fernandez-Dominguez, D.W. McComb, S.A. Maier, J.K.W. Yang, High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 11(3), 1323–1330 (2011)

    Article  ADS  Google Scholar 

  39. U. Leonhardt, T.G. Philbin, General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  40. R. Liboff, Introductory Quantum Mechanics, 4th edn. (Addison-Wesley, Reading, 2002)

    Google Scholar 

  41. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758–762 (2009)

    Article  ADS  Google Scholar 

  42. S. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  43. A. Mary, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, Theory of negative-refractive-index response of double-fishnet structures. Phys. Rev. Lett. 101, 103902 (2008)

    Article  ADS  Google Scholar 

  44. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, R. Bratschitsch, Nanomechanical control of an optical antenna. Nat. Photonics 2(4), 230–233 (2008)

    Article  Google Scholar 

  45. G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys. 25(3), 377–445 (1908)

    Article  MATH  Google Scholar 

  46. G. Moellenstedt, R. Speidel, Elektronenoptischer Mikroschreiber unter Elektronenmikroskopischer Arbeitskontrolle. Phys. Bl. 16, 192 (1960)

    Article  Google Scholar 

  47. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308(5728), 1607–1609 (2005)

    Article  ADS  Google Scholar 

  48. B.A. Munk, Frequency Selective Surfaces: Theory and Design (Wiley-Interscience, New York, 2000)

    Book  Google Scholar 

  49. B.A. Munk, Finite Antenna Arrays and FSS (Wiley/IEEE Press, New York, 2003)

    Book  Google Scholar 

  50. B.A. Munk, G.A. Burrell, Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space. IEEE Trans. Antennas Propag. 27(3), 331–343 (1979)

    Article  ADS  Google Scholar 

  51. G. Naik, A. Boltasseva, A comparative study of semiconductor-based plasmonic metamaterials. Metamaterials 5, 1–7 (2011)

    Article  ADS  Google Scholar 

  52. G.V. Naik, A. Boltasseva, Semiconductors for plasmonics and metamaterials. Phys. Status Solidi RRL 4(10), 295–297 (2010)

    Article  Google Scholar 

  53. G.V. Naik, J. Kim, A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1(6), 1090–1099 (2011)

    Article  Google Scholar 

  54. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, V. Podolskiy, Transparent conductive oxides: plasmonic materials for Telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011)

    Article  ADS  Google Scholar 

  55. D.M. O’Carroll, C.E. Hofmann, H.A. Atwater, Conjugated polymer/metal nanowire heterostructure plasmonic antennas. Adv. Mater. 22(11), 1223 (2010)

    Article  Google Scholar 

  56. J.H. Orloff, L.W. Swanson, Study of a field-ionization source for microprobe applications. J. Vac. Sci. Technol. 12(6), 1209–1213 (1975)

    Article  ADS  Google Scholar 

  57. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    Article  ADS  Google Scholar 

  58. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009)

    Article  ADS  Google Scholar 

  60. A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31(14), 2169–2171 (2006)

    Article  ADS  Google Scholar 

  61. C.E. Reuter, R.M. Joseph, E.T. Thiele, D.S. Katz, A. Taflove, Ultrawideband absorbing boundary condition for termination of waveguide structures in FD–TD simulations. IEEE Microw. Guided Wave Lett. 4(10), 344–346 (1994)

    Article  Google Scholar 

  62. M.M.I. Saadoun, N. Engheta, A reciprocal phase-shifter using novel pseudochiral or omega-medium. Microw. Opt. Technol. Lett. 5(4), 184–188 (1992)

    Article  ADS  Google Scholar 

  63. S.L. Sass, The Substance of Civilization (Arcade, New York, 1998)

    Google Scholar 

  64. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  65. D. Schurig, J.B. Pendry, D.R. Smith, Calculation of material properties and ray tracing in transformation media. Opt. Express 14(21), 9794–9804 (2006)

    Article  ADS  Google Scholar 

  66. R. Seliger, J.W. Ward, V. Wang, R.L. Kubena, A high-intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34(5), 310–312 (1979)

    Article  ADS  Google Scholar 

  67. V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005)

    Article  ADS  Google Scholar 

  68. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006)

    Article  ADS  Google Scholar 

  69. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006)

    Article  ADS  Google Scholar 

  70. P.P. Silvester, Finite element solution of homogeneous waveguide problems. Alta Freq. 38, 313–317 (1969)

    Google Scholar 

  71. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  72. C.M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths. Science 315(5808), 47–49 (2007)

    Article  Google Scholar 

  73. P. Sudraud, G. Assayag, M. Bon, Focused ion beam milling, scanning electron microscopy, and focused droplet deposition in a single microsurgery tool. J. Vac. Sci. Technol. B 6, 234–238 (1988)

    Article  Google Scholar 

  74. L.A. Sweatlock, Plasmonics: numerical methods and device applications. Ph.D. thesis, California Institute of Technology, 2008

    Google Scholar 

  75. A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 22, 191–202 (1980)

    Article  ADS  Google Scholar 

  76. A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)

    Google Scholar 

  77. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a sic superlens. Science 313(5793), 1595 (2006)

    Article  Google Scholar 

  78. M. Thiel, H. Fischer, G.V. Freymann, M. Wegener, Three-dimensional chiral photonic superlatticies. Opt. Lett. 35(2), 166 (2010)

    Article  ADS  Google Scholar 

  79. J. Valentine, J.S. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics. Nat. Mater. 8(7), 568–571 (2009)

    Article  ADS  Google Scholar 

  80. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)

    Article  ADS  Google Scholar 

  81. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of epsilon and mu. Sov. Phys. Usp. 10(4), 509–514 (1968)

    Article  ADS  Google Scholar 

  82. A.J. Ward, J.B. Pendry, Refraction and geometry in Maxwell’s equations. J. Mod. Opt. 43(4), 773–793 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. P. West, S. Ishii, G. Naik, N. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)

    Article  Google Scholar 

  84. R.B. Wu, T. Itoh, Hybridizing FDTD analysis with unconditionally stable FEM for objects of curved boundary, in IEEE Microwave Theory and Techniques Society Symposium Digest, vol. 2 (1995), pp. 833–836

    Google Scholar 

  85. S.K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    ADS  MATH  Google Scholar 

  86. X. Yu, Y.J. Lee, R. Furstenberg, J.O. White, P.V. Braun, Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 19, 1689–1692 (2007)

    Article  Google Scholar 

  87. A.A. Zharov, I.V. Shadrivov, Y.S. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Diest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diest, K. (2013). Introduction. In: Diest, K. (eds) Numerical Methods for Metamaterial Design. Topics in Applied Physics, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6664-8_1

Download citation

Publish with us

Policies and ethics