Skip to main content

Geometric Calibration of Thermographic Cameras

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

Abstract

This chapter presents an overview of thermal imaging sensors for photogrammetric close-range applications. In particular, it presents results of the geometric calibration of thermographic cameras as they are used for building inspection and material testing. Geometric calibration becomes evident for all precise geometric image operations, e.g. mosaicking of two or more images or photogrammetric 3D modelling with thermal imagery. Two different test fields have been designed providing point targets that are visible in the thermal spectral band of the cameras.

Five different cameras have been investigated. Four of them have solid state sensors with pixel sizes between 25 and 40 μm (i.e. size of single sensor element on the chip). One camera is working in scanning mode. The lenses for thermographic cameras are made of Germanium, which is, in contrast to glass, transparent to thermal radiation. Conventional imaging configurations (typically 20 images) have been used for camera calibration. Standard parameters for principal distance, principal point, radial distortion, decentring distortion, affinity and shear have been introduced into the self-calibrating bundle adjustment. All measured points are introduced as weighted control points. Image coordinates have been measured either in the professional software package AICON 3D Studio (ellipse operators), or in the software system Stereomess (least-squares template matching), developed by the Institute for Applied Photogrammetry and Geoinformatics of the Jade University of Applied Sciences Oldenburg.

The calibration results differ significantly from camera to camera. All lenses show relatively large decentring distortion and deviations from orthogonality of the image coordinate axes. Using a plane test field with heated lamps, the average image precision is 0.3 pixel while a 3D test field with circular reflecting targets results in imaging errors of 0.05 pixel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buyuksalih G, Petrie G (1999) Geometric and radiometric calibration of frame-type infrared imagers. ISPRS joint workshop sensors and mapping from space 1999, Hannover

    Google Scholar 

  • Dereniak EL, Boreman GD (1996) Infrared detectors and systems. Wiley-Interscience, New York, 561pp

    Google Scholar 

  • Ehlers M, Klonusa S, Åstrand PJ, Rosso P (2010) Multi-sensor image fusion for pansharpening in remote sensing. Int J Image Data Fusion 1(1):25–45

    Article  Google Scholar 

  • Fouad NA, Richter T (2008) Leitfaden Thermografie im Bauwesen. Fraunhofer IRB Verlag, Stuttgart, 127pp

    Google Scholar 

  • Fraser CS (1997) Digital camera self-calibration. ISPRS J Photogramm Remote Sens 52:149–159

    Article  Google Scholar 

  • Godding R (1993) Ein photogrammetrisches Verfahren zur Überprüfung und Kalibrierung digitaler Bildaufnahmesysteme. Z Photogramm Fernerkund 2:82–90

    Google Scholar 

  • Hierl T (2008) Hochauflösende Infrarot-Detektormatrizen. In: Bauer N (ed) Handbuch zur Industriellen Bildverarbeitung. Fraunhofer IRB Verlag, Stuttgart, pp 41–46

    Google Scholar 

  • Kaplan H (2007) Practical applications of infrared thermal sensing and image equipment. SPIE Publications, Bellingham, 192pp

    Book  Google Scholar 

  • Le Noc L, Tremblay B, Martel A, Chevalier C, Blanchard N, Morissette M, Mercier L, Duchesne F, Gagnon L, Couture P, Lévesque F, Desnoyers N, Demers M, Lamontage F, Jerominek H, Bergeron A (2010) 1280 × 960 pixel microscanned infrared imaging module. In: Infrared technology and applications XXXVI. Proceedings of SPIE, vol 7660: 766021-766021-10, Orlando, 2010

    Google Scholar 

  • Luhmann T (2010) Erweiterte Verfahren zur geometrischen Kamerakalibrierung in der Nahbereichsphotogrammetrie, Habilitationsschrift, Deutsche Geodätische Kommission, Reihe C, Nr. 645. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, München

    Google Scholar 

  • Luhmann T, Robson S, Kyle S, Harley I (2006) Close range photogrammetry. Whittles Publishing, Dunbeath, 500pp

    Google Scholar 

  • Luhmann T, Ohm J, Piechel J, Roelfs T (2010) Geometric calibration of thermographic cameras. In: International archives of photogrammetry, remote sensing and spatial information sciences, vol XXXVIII, Part 5 Commission V symposium, Newcastle upon Tyne, 2010, pp 411–416

    Google Scholar 

  • Nolting J (2007) Detektoren für optische Strahlung. DOZ Optometrie 4-2007:50–56

    Google Scholar 

  • Planck M (1900) Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen physikalischen Gesellschaft 2(17):237–245, Berlin

    Google Scholar 

  • Schuster N, Kolobrodov VG (2004) Infrarotthermographie. Wiley-VCH Verlag, Weinheim, 354pp

    Book  Google Scholar 

  • Toet A, van Ruyven JJ, Valeton JM (1989) Merging thermal and visual images by a contrast pyramid. Opt Eng 28(7):789–792

    Article  Google Scholar 

  • Wolfe WL, Zissis GJ (1985) The infrared handbook. Environmental Research Institute of Michigan, Ann Arbor, 1700pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Luhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Luhmann, T., Piechel, J., Roelfs, T. (2013). Geometric Calibration of Thermographic Cameras. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_2

Download citation

Publish with us

Policies and ethics