Skip to main content

Metabolic and Gene Expression Controls on the Production of Biogenic Volatile Organic Compounds

  • Chapter
  • First Online:
Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

The emission of biogenic volatile organic compounds (BVOCs), including isoprenoid compounds, methanol and oxygenated organic compounds, is controlled by both the existing metabolic potential of a leaf and gene expression responses that modulate the existing metabolic potential to increase or decrease compound biosynthesis and emission rate. This capability to respond both instantaneously and in the long term to environmental variation provides plants with flexibility in their adaptions to biotic and abiotic stresses, which are also encountered in short and long-term time frames. This chapter reviews the mechanistic basis of the immediate controls of volatile BVOC emissions by light, temperature, and ambient CO2 and O2 concentrations, as well as the genetic responses that involve changes in gene expression patterns. Photosynthesis ultimately provides the carbon for BVOC production, though under non-stressed conditions the photosynthetic rate itself is rarely so low that it limits BVOC emissions. However, various metabolic pathways compete for substrates that are produced from photosynthate, including cytosolic pathways, such as the mevalonic acid (MVA) pathway and chloroplastic pathways such as the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway (MEP/DOXP). Controls over the use of substrate are regulated among these pathways through feedback mechanisms, specificity in the transport of metabolites across organelle membranes, and the channeling of NADPH reductant and ATP to specific steps in the pathways. This chapter emphasizes that these interactive controls provide the major explanation for longer-term physiological controls of emissions. Emissions of several types of compounds are considered, including isoprenoids, methanol, and green leaf volatiles such as various aldehydes and ketones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashworth K, Folberth G, Hewitt CN, Wild O (2012) Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality. Atmos Chem Phys 12:919–939

    Article  CAS  Google Scholar 

  • Ashworth K, Boissard C, Folberth G, Lathière J, Schurgers G (2013) Global modeling of volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J (2005) Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant Cell Environ 28:1334–1343

    Article  CAS  Google Scholar 

  • Behnke K, Kaiser A, Zimmer I, Brüggemann N, Janz D, Polle A, Hampp R, Hänsch R, Popko J, Schmitt-Kopplin P, Ehlting B, Rennenberg H, Barta C, Loreto F, Schnitzler J-P (2010b) RNAi-mediated suppression of isoprene emission in poplar impacts phenolic metabolism: a transcriptomic and metabolomic analysis. Plant Mol Biol 74:61–75

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Ruuskanen TM, Schnitzhofer R, Müller M, Breitenlechner M, Bittner V, Wohlfahrt G, Loreto F, Hansel A (2011) Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “time-of-flight” mass spectrometry (PTR-TOF). PLoS One 6:e20419

    Article  PubMed  CAS  Google Scholar 

  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Scarazzia-Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2007) Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ 30:654–661

    Article  PubMed  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  PubMed  CAS  Google Scholar 

  • Catoire L, Pierron M, Morvan C, du Penhoat CH, Goldberg R (1998) Investigation of the action patterns of pectin methylesterase isoforms through kinetic analyses and NMR spectroscopy – implications in cell wall expansion. J Biol Chem 273:33150–33156

    Article  PubMed  CAS  Google Scholar 

  • Centritto M, Nascetti P, Petrilli L, Raschi A, Loreto F (2004) Profiles of isoprene emission and photosynthetic parameters in hybrid poplars exposed to free-air CO2 enrichment. Plant Cell Environ 27:403–412

    Article  CAS  Google Scholar 

  • Christiansen E, Krokene P, Berryman AA, Franceschi VR, Krekling T, Lieutier F, Lönneborg A, Solheim H (1999) Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol 19:399–403

    Article  PubMed  Google Scholar 

  • Cinege G, Louis S, Haensch SR, Schnitzler J-P (2009) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604

    Article  PubMed  CAS  Google Scholar 

  • Cojocariu C, Escher P, Häberle KH, Matyssek R, Rennenberg H, Kreuzwieser J (2005) The effect of ozone on the emission of carbonyls from leaves of adult Fagus sylvatica. Plant Cell Environ 28:603–611

    Article  CAS  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solarium lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169:664–672

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF, Sharkey TD (1993) Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ 16:587–591

    Article  CAS  Google Scholar 

  • Dorokhov YL, Komarova TV, Petrunia IV, Kosorukov VS, Zinovkin RA, Shindyapina AV, Frolova OY, Gleba YY (2012) Methanol may function as a cross-kingdom signal. PLoS One 7:e36122

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The non-mevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  PubMed  CAS  Google Scholar 

  • Eller ASD, Harley PC, Monson RK (2013) Potential contribution of exposed resin to ecosystem emissions of volatile organic compounds (VOCs). Atmos Environ (in press)

    Google Scholar 

  • Elzenga JTM, Staal M, Prins HBA (2000) Modulation by phytochrome of the blue light-induced extracellular acidification by leaf epidermal cells of pea (Pisum sativum L.): a kinetic analysis. Plant J 22:377–389

    Article  PubMed  CAS  Google Scholar 

  • Fall R, Karl T, Jordon A, Lindinger W (2001) Biogenic C5 VOCs: release from leaves after freeze-thaw wounding and occurrence in air at a high mountain observatory. Atmos Environ 35:3905–3916

    Article  CAS  Google Scholar 

  • Fares S, Oksanen E, Lannenpää M, Julkunen-Tiitto R, Loreto F (2010) Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosyn Res S104:61–74

    Article  CAS  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler J-P, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697

    Article  PubMed  CAS  Google Scholar 

  • Funk JL, Mak JE, Lerdau MT (2004) Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant Cell Environ 27:747–755

    Article  CAS  Google Scholar 

  • Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism. CRC Press, Boca Raton, pp 222–299

    Google Scholar 

  • Ghirardo A, Koch K, Taipale R, Zimmer I, Schnitzler J-P, Rinne J (2010) Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis. Plant Cell Environ 33:781–792

    PubMed  CAS  Google Scholar 

  • Graus M, Schnitzler J-P, Hansel A, Cojocariu C, Rennenberg H, Wisthaler A, Kreuzwieser J (2004) Transient release of oxygenated volatile organic compounds during light-dark transitions in grey poplar leaves. Plant Physiol 135:1967–1975

    Article  PubMed  CAS  Google Scholar 

  • Gray JC (1987) Control of isoprenoid biosynthesis in higher plants. Adv Bot Res 14:25–91

    Article  CAS  Google Scholar 

  • Guenther AB, Monson RK, Fall R (1991) Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res 96:10799–10808

    Article  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability—model evaluations and sensitivity analyses. J Geophys Res 98:12609–12617

    Article  Google Scholar 

  • Hampel D, Mosandl A, Wüst M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311

    Article  PubMed  CAS  Google Scholar 

  • Harley PC (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Harley P, Greenberg J, Niinemets Ü, Guenther A (2007) Environmental controls over methanol emission from leaves. Biogeosciences 4:1083–1099

    Article  CAS  Google Scholar 

  • Heald CL, Wilkinson MJ, Monson RK, Alo CA, Wang GL, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Global Change Biol 15:1127–1140

    Article  Google Scholar 

  • Heiden AC, Kobel K, Langebartels C, Schuh-Thomas G, Wildt J (2003) Emissions of oxygenated volatile organic compounds from plants. Part I. Emissions from lipoxygenase activity. J Atmos Chem 45:143–172

    Article  CAS  Google Scholar 

  • Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184

    Article  PubMed  CAS  Google Scholar 

  • Horbach S, Sahm H, Welle R (1993) Isoprenoid biosynthesis in bacteria: Two different pathways? FEMS Microbiol Lett 111:135–140

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Hüve K, Christ MM, Kleist E, Uerlings R, Niinemets Ü, Walter A, Wildt J (2007) Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J Exp Bot 58:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jardine K, Karl T, Lerdau M, Harley P, Guenther A, Mak JE (2009) Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biol 11:591–597

    Article  PubMed  CAS  Google Scholar 

  • Jardine KJ, Sommer ED, Saleska SR, Huxman TE, Harley PC, Abrell L (2010) Gas phase measurements of pyruvic acid and its volatile metabolites. Environ Sci Tech 44:2454–2460

    Article  CAS  Google Scholar 

  • Jardine K, Barron-Gafford GA, Norman JP, Abrell L, Monson RK, Meyers KT, Pavao-Zuckerman M, Dontsova K, Kleist E, Werner C, Huxman TE (2012) Green leaf volatiles and oxygenated metabolite emission bursts from mesquite branches following light–dark transitions. Photosyn Res SI 113:321–333

    Article  CAS  Google Scholar 

  • Karl T, Curtis AJ, Rosenstiel TN, Monson RK, Fall R (2002) Transient releases of acetaldehyde from tree leaves – products of a pyruvate overflow mechanism? Plant Cell Environ 25:1121–1131

    Article  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  PubMed  CAS  Google Scholar 

  • Kimmerer TW, MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84:1204–1209

    Article  PubMed  CAS  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2013) Flooding-driven emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P. alba) trees. J Exp Bot 50:757–765

    CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lerdau M (1991) Plant function and biogenic terpene emission. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic, San Diego, pp 121–134

    Chapter  Google Scholar 

  • Lerdau M, Gray D (2003) Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol 157:199–211

    Article  CAS  Google Scholar 

  • Lerdau M, Dilts SB, Westberg H, Lamb BK, Allwine EJ (1994) Monoterpene emission from ponderosa pine. J Geophys Res 99:16609–16615

    Article  CAS  Google Scholar 

  • Lewinsohn E, Guzen M, Savage TJ, Croteau R (1991) Defense mechanisms of conifers – relationships of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content. Plant Physiol 96:38–43

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ratliff EA, Sharkey TD (2011) Effect of temperature on postillumination isoprene emission in oak and poplar. Plant Physiol 155:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Sharkey TD (2013) Molecular and pathway controls on biogenic volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Ann Rev Plant Physiol Plant Mol Biol 50:47–55

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate independent pathway. FEBS Lett 400:271–274

    Article  PubMed  CAS  Google Scholar 

  • Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540

    Article  Google Scholar 

  • Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler J-P (2007) Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 143:540–551

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Sharkey TD (1990) A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta 182:523–531

    Article  CAS  Google Scholar 

  • Loreto F, Nascetti P, Graverini A, Mannozzi M (2000) Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, Pinus pinea. Funct Ecol 14:589–595

    Article  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  PubMed  CAS  Google Scholar 

  • Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler J-P (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40:S138–S151

    Article  CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    Article  PubMed  CAS  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    Article  PubMed  CAS  Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves—influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90:267–274

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    Article  PubMed  CAS  Google Scholar 

  • Monson RK, Lerdau MT, Sharkey TD, Schimel DS, Fall R (1995) Biological aspects of constructing volatile organic compound emission inventories. Atmos Environ 29:2989–3002

    Article  CAS  Google Scholar 

  • Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore DJP, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R (2007) Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Phil Trans Roy Soc A 365:1677–1695

    Article  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  PubMed  CAS  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves: enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol 108:1359–1368

    PubMed  CAS  Google Scholar 

  • Nerg A-M, Kainulainen P, Vuorinen M, Hanso M, Holopainen JK, Kurkela T (1994) Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris). New Phytol 128:703–713

    Article  CAS  Google Scholar 

  • Nguyen T, Drotar AM, Monson RK, Fall R (2009) A high affinity pyruvate decarboxylase is present in cottonwood leaf veins and petioles: A second source of leaf acetaldehyde emission? Phytochemistry 70:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res 108:4208

    Article  CAS  Google Scholar 

  • Niinemets Ü, Reichstein M, Staudt M, Seufert G, Tenhunen JD (2002) Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea. Plant Physiol 130:1371–1385

    Article  PubMed  CAS  Google Scholar 

  • Nikolic B, Ristic M, Bojovic S, Marin PD (2008) Variability of the needle essential oils of Pinus peuce from different populations in Montenegro and Serbia. Chem Biodiv 5:1377–1388

    Article  CAS  Google Scholar 

  • Noe SM, Ciccioli P, Brancaleoni E, Loreto F, Niinemets Ü (2006) Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos Environ 40:4649–4662

    Article  CAS  Google Scholar 

  • Oikawa PY, Li L, Timko MP, Mak JE, Lerdau MT (2007) Short term changes in methanol emission and pectin methylesterase activity are not directly affected by light in Lycopersicon esculentum. Biogeosciences 8:1023–1030

    Article  CAS  Google Scholar 

  • Owen SM, Harley P, Guenther A, Hewitt CN (2002) Light dependency of VOC emissions from selected Mediterranean plant species. Atmos Environ 36:3147–3159

    Article  CAS  Google Scholar 

  • Owen SM, Hewitt CN, Rowland CS (2013) Scaling emissions from agroforestry plantations and urban habitats. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968–972

    Article  PubMed  CAS  Google Scholar 

  • Pegoraro E, Rey A, Barron-Gafford G, Monson R, Malhi Y, Murthy R (2005) The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Oecologia 146:120–129

    Article  PubMed  Google Scholar 

  • Pelloux J, Rusterucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277

    Article  PubMed  CAS  Google Scholar 

  • Possell M, Hewitt CN (2011) Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biol 17:1595–1610

    Article  Google Scholar 

  • Possell M, Hewitt CN, Beerling D (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emission by vascular plants. Global Change Biol 11:60–69

    Article  Google Scholar 

  • Proteau PJ (1998) Probing the non-mevalonate pathway to phytol in the cyanobacterium Synechocystis UTEX 2470 using deuterium-labeled glucose. Tetrahedron Lett 39:9373–9376

    Article  CAS  Google Scholar 

  • Purves DW, Caspersen JP, Moorcroft PR, Hurtt GC, Pacala SW (2004) Human-induced changes in US biogenic volatile organic compound emissions: evidence from long-term forest inventory data. Global Change Biol 10:1737–1755

    Article  Google Scholar 

  • Rajabi Memari H, Pazouki L, Niinemets Ü (2013) The biochemistry and molecular biology of volatile messengers in trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rapparini F, Baraldi R, Miglietta F, Loreto F (2004) Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ 27:381–391

    Article  CAS  Google Scholar 

  • Rasulov B, Copolovici L, Laisk A, Niinemets Ü (2009a) Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol 149:1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Välbe M, Laisk A, Niinemets Ü (2009b) Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiol 151:448–460

    Article  PubMed  CAS  Google Scholar 

  • Rasulov B, Hüve K, Bichele I, Laisk A, Niinemets Ü (2010) Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis. Plant Physiol 154:1558–1570

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Concepción M, Forés O, Martínez-García JF, González V, Phillips MA, Ferrer A, Boronat A (2004) Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16:144–156

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  • Rontein D, Dieuaide-Noubhani M, Dufourc EJ, Raymond P, Rolin D (2002) The metabolic architecture of plant cells – stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J Biol Chem 277:43948–43960

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz M, Schnitzler J-P (2013) Genetic engineering of BVOC emissions from trees. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  PubMed  CAS  Google Scholar 

  • Sanadze GA (1964) Light-dependent excretion of isoprene by plants. Photosynth Res 2:701–707

    Google Scholar 

  • Schiebe C, Hammerbacher A, Birgersson G, Witzell J, Brodelius PE, Gershenzon J, Hansson BS, Krokene P, Schlyter F (2012) Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170:183–198

    Article  PubMed  Google Scholar 

  • Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signaling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77:577–590

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler J-P, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus x canescens). Planta 222:777–786

    Article  PubMed  CAS  Google Scholar 

  • Scholefield PA, Doick KJ, Herbert BM, Hewitt CN, Schnitzler J-P, Pinelli P, Loreto F (2004) Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ 27:393–401

    Article  CAS  Google Scholar 

  • Schwender J, Seemann M, Lichtenthaler HK, Rohmer M (1996) Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde-3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80

    PubMed  CAS  Google Scholar 

  • Seto H, Watanabe H, Furihata K (1996) Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett 37:7979–7982

    Article  CAS  Google Scholar 

  • Shao M, Czapiewski KV, Heiden AC, Kobel K, Komenda M, Koppmann R, Wildt J (2001) Volatile organic compound emissions from Scots pine: mechanisms and description by algorithms. J Geophys Res 106:20483–20491

    Article  CAS  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712

    Article  PubMed  CAS  Google Scholar 

  • Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. Genome Res 10:1468–1484

    Article  PubMed  CAS  Google Scholar 

  • Spurgeon SL, Porter JW (1981) Introduction. In: Porter JW, Spurgeon L (eds) Biosynthesis of isoprenoid compounds, vol I. Wiley, New York, pp 1–46

    Google Scholar 

  • Staudt M, Bertin N, Hansen U, Seufert G, Ciccioli P, Foster P, Frenzel B, Fugit JL (1997) Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmos Environ 31:145–156

    Article  CAS  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1999) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  Google Scholar 

  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V (2012) Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Global Change Biol 18:3423–3440

    Article  Google Scholar 

  • Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK (2012) Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS One 7:e32387

    Article  PubMed  CAS  Google Scholar 

  • Trutko SM, Dorofeeva LV, Shcherbakova VA, Chuvil’skaya NA, Laurinavichus KS, Binyukov VI (2004) Occurrence of nonmevalonate and mevalonate pathways for isoprenoid biosynthesis in bacteria of different taxonomic groups. Microbiology 74:153–158

    Article  CAS  Google Scholar 

  • van Poecke RMP, Dicke M (2004) Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol 6:387–401

    Article  PubMed  CAS  Google Scholar 

  • van Volkenburgh E (1999) Leaf expansion – an integrating plant behavior. Plant Cell Environ 22:1463–1473

    Article  Google Scholar 

  • Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM (2011) Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant Cell Environ 34:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • von Dahl CC, Havecker M, Schlogl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions? Plant J 46:948–960

    Article  CAS  Google Scholar 

  • Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905

    Article  CAS  Google Scholar 

  • Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, Hall A, Vickers C, Hewitt CN (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47:960–968

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R (2009) Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Global Change Biol 15:1189–1200

    Article  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W, Kuhnemann F, Yeh S, Weise SE (2003) Biochemical regulation of isoprene emission. Plant Cell Environ 26:1357–1364

    Article  CAS  Google Scholar 

  • Wolfertz M, Sharkey TD, Boland W, Kuhnemann F (2004) Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis. Plant Physiol 135:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Zeidler JG, Lichtenthaler HK, May HU, Lichtenthaler FW (1997) Is isoprene emitted by plants synthesized via a novel isopentenyl pyrophosphate pathway? Z Naturforsch C 52:15–23

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell K. Monson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Monson, R.K. (2013). Metabolic and Gene Expression Controls on the Production of Biogenic Volatile Organic Compounds. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_6

Download citation

Publish with us

Policies and ethics