Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 5))

Abstract

Plants release unique blends of biogenic volatile organic compounds (BVOCs) into the atmosphere, part of a silent language used to communicate with other organisms in their community. Within this high traffic chemical environment, plants and insects, among other organisms, are receiving, processing, modifying, and responding to information conveyed through varying suites of molecules. Because plants and insects are part of an integrative complex of food web relationships, one common topic of conversation is defence. Plants maintain a baseline level of BVOC emissions as a bottom-up constitutive defence, emitting compounds that act as repellents or deterrents to feeding and/or egg deposition by herbivores. Due to the autonomy of their attackers, plants can also employ an indirect top-down defence strategy, releasing induced volatiles in response to feeding that attract the natural enemies of their herbivore attackers, such as predators and parasitoids. Both bottom-up and top-down BVOC-mediated strategies have important consequences for herbivore preference, performance, and survival with even broader ecological and evolutionary consequences for tritrophic interactions. In this chapter we discuss how constitutive BVOCs mediate aspects of plant defence within a hierarchical spatiotemporal framework. Next we bring to light some of the most recent research on oviposition- and herbivore-induced BVOC synthesis and subsequent effects on the recruitment of natural enemies. We follow up by discussing the ecological effects of induced BVOCs in the context of multiple herbivores, expression from various plant organs, time-lags associated with BVOC induction, and heterogeneity within the infochemical environment. The critical feature of insect learning is described and we highlight some of the major evolutionary implications of BVOC-mediated plant defence syndromes that rely on the unique timing of events at the biochemical, atmospheric, organismal, and community scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500. doi:10.1034/j.1600-0706.2000.890308.x

    Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149

    Article  PubMed  Google Scholar 

  • Arimura G-i, Huber DPW, Bohlmann J (2004) Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): cDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant J 37:603–616

    Article  CAS  PubMed  Google Scholar 

  • Augustyn WA, Botha BM, Combrinck S, Maree JE, du Plooy GW (2010) Effect of secondary metabolites on gall fly infestation of mango leaves. Flavour Frag J 25:223–229. doi:10.1002/ffj.1999

    Article  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142. doi:10.1023/A:1003200108763

    Article  CAS  Google Scholar 

  • Blanch J-S, Sampedro L, Llusià J, Moreira X, Zas R, Peñuelas J (2012) Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis. Plant Biol 14(Suppl 1):66–72. doi:10.1111/j.1438-8677.2011.00492.x

    Article  CAS  PubMed  Google Scholar 

  • Boege K, Barton KE, Dirzo R (2011) Influence of tree ontogeny on plant-herbivore interactions. Tree Physiol 4:193–214. doi:10.1007/978-94-007-1242-3

    Article  Google Scholar 

  • Brilli F, Ciccioli P, Frattoni M, Prestininzi M, Spanedda AF, Loreto F (2009) Constitutive and herbivore-induced monoterpenes emitted by Populus x euramericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552. doi:10.1111/j.1365-3040.2009.01948.x

    Article  CAS  PubMed  Google Scholar 

  • Bruin J, Dicke M (2001) Chemical information transfer between wounded and unwounded plants: backing up the future. Biochem Syst Ecol 29:1103–1113

    Article  CAS  Google Scholar 

  • Calfapietra C, Pallozzi E, Lusini I, Velikova V (2013) Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Carrasco M, Montoya P, Cruz-Lopez L, Rojas JC (2005) Response of the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) to mango fruit volatiles. Environ Entomol 34:576–583. doi:10.1603/0046-225X-34.3.576

    Article  Google Scholar 

  • Clancy KM, Chen Z, Kolb TE (2004) Foliar nutrients and induced susceptibility: genetic mechanisms of Douglas-fir resistance to western spruce budworm defoliation. Can J Forest Res 34:939–949. doi:10.1139/X03-264

    Article  CAS  Google Scholar 

  • Cole RA (1980) Volatile components produced during ontogeny of some cultivated crucifers. J Sci Food Agr 31:549–557

    Article  CAS  Google Scholar 

  • Cortesero AM, De Moraes CM, Stapel JO, Tumlinson JH, Lewis WJ (1997) Comparisons and contrasts in host-foraging strategies of two larval parasitoids with different degrees of host specificity. J Chem Ecol 23:1589–1606. doi:10.1023/B:JOEC.0000006424.41365.0d

    Article  CAS  Google Scholar 

  • de Boer JG, Dicke M (2006) Olfactory learning by predatory arthropods. Anim Biol 56:143–155

    Article  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 570–573

    Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580. doi:10.1038/35069058

    Article  PubMed  CAS  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012. doi:10.1007/s10886-007-9273-6

    Article  CAS  PubMed  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142. doi:10.1046/j.1570-7458.1999.00475.x

    Article  CAS  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665. doi:10.1111/j.1365-3040.2008.01913.x

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Vet LEM (1999) Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore. In: Drent RH (ed) Herbivores: between plants and predators. Blackwell Science, Oxford, pp 483–520

    Google Scholar 

  • Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922

    Article  CAS  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511. doi:10.1007/s004420000482

    Article  Google Scholar 

  • Doss RP (2005) Treatment of pea pods with bruchin B results in up-regulation of a gene similar to MtN19. Plant Physiol Biochem 43:225–231

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Critic Rev Plant Sci 25:417–440. doi:10.1080/07352680600899973

    Article  CAS  Google Scholar 

  • Dukas R, Jun J (2000) Potential fitness consequences of associative learning in a parasitoid wasp. Behav Ecol 11:536–543

    Article  Google Scholar 

  • Euler M, Baldwin IT (1996) The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107:102–112

    Article  Google Scholar 

  • Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908. doi:10.1111/j.1469-8137.2009.03127.x

    Article  PubMed  Google Scholar 

  • Fahn A (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr J Plant Sci 50:S59–S65

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, van Loon JJA, Hordijk KA, Smid HM, Dicke M (2005) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J Chem Ecol 31:2033–2047. doi:10.1007/s10886-005-6076-5

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace J, Mansell R (eds) Biochemical interaction between plants and insects, vol 10, Annual review of phytochemistry. Plenum Press, New York, pp 1–40

    Chapter  Google Scholar 

  • Fineschi S, Loreto F (2012) Leaf volatile isoprenoids: an important defensive armament in forest tree species. iForest Biogeosci Forest 5:13–17. doi:10.3832/ifor0607-009

    Article  Google Scholar 

  • Fineschi S, Loreto F, Staudt M, Peñuelas J (2013) Diversification of volatile isoprenoid emissions from trees: evolutionary and ecological perspectives. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol Lett 10:490–498

    Article  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824. doi: 10.1104/pp. 107.113027

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003a) Mechanisms of behavioral alterations of parasitoids reared in artificial systems. J Chem Ecol 29:1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003b) Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc Royal Soc Biol 270:2623–2629. doi:10.1098/rspb.2003.2541

    Article  Google Scholar 

  • Geervliet JBF, Vreugdenhil AI, Dicke M, Vet LEM (1998) Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and C. rubecula. Entomol Exp Appl 86:241–252

    Article  CAS  Google Scholar 

  • Grabmer W, Kreuzwieser J, Wisthaler A, Cojocariu C, Graus M, Rennenberg H, Steigner D, Steinbrecher R, Hansel A (2006) VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field—results of a dynamic enclosure study. Atmos Environ 40:128–137. doi:10.1016/j.atmosenv.2006.03.043

    Article  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  CAS  PubMed  Google Scholar 

  • Grote R, Monson RK, Niinemets Ü (2013) Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Guenther A (1997) Seasonal and spatial variations in natural volatile organic compound emissions. Ecol Appl 7:34–45

    Article  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892. doi:10.1029/94JD02950

    Article  CAS  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Hakola H, Tarvainen V, Laurila T, Hiltunen V, Hellén H, Keronen P (2003) Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos Environ 37:1623–1634. doi:10.1016/S1352-2310(03)00014-1

    Article  CAS  Google Scholar 

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals -‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11:24–34. doi:10.1111/j.1461-0248.2007.01123.x

    PubMed  Google Scholar 

  • Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hastings A, Godfray HCJ (1999) Learning, host fidelity, and the stability of host-parasitoid communities. Am Nat 153:295–301

    Article  Google Scholar 

  • Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 5:345–350

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) From the cover: within-plant signalling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signaling in plant defence. Trends Plant Sci 13:264–272. doi:10.1016/j.tplants.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, McNeil J (2008) Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. In: Wajnberg É, Bernstein C, van Alphen J (eds) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Publishing Ltd, Oxford, pp 92–112

    Chapter  Google Scholar 

  • Hilker M, Meiners T (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomol Exp Appl 104:181–192. doi:10.1046/j.1570-7458.2002.01005.x

    Article  CAS  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397. doi:10.1007/s10886-006-9057-4

    Article  CAS  PubMed  Google Scholar 

  • Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev 85:267–280. doi:10.1111/j.1469-185X.2009.00100.x

    Article  PubMed  Google Scholar 

  • Hódar JA, Zamora R, Castro J, Baraza E (2004) Feast and famine: previous defoliation limiting survival of pine processionary caterpillar Thaumetopoea pityocampa in Scots pine Pinus sylvestris. Acta Oecol 26:203–210

    Article  Google Scholar 

  • Holopainen JK, Gershenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 15:176–184. doi:10.1016/j.tplants.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Nerg A-M, Blande JD (2013) Multitrophic signalling in polluted atmospheres. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Ibrahim MA, Nissinen A, Holopainen JK (2005) Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol 31:1969–1984. doi:10.1007/s10886-005-6071-x

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Chicago University Press, Chicago

    Book  Google Scholar 

  • Karl T (2003) Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophys Res Lett 30:2–5. doi:10.1029/2003GL018432

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328. doi:10.1146/annurev.arplant.53.100301.135207

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2007) Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol 10:409–414. doi:10.1016/j.pbi.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol 23:901–912. doi:10.1111/j.1365-2435.2009.01639.x

    Article  Google Scholar 

  • Krings M, Taylor TN, Kellogg DW (2002) Touch sensitive glandular trichomes: a mode of defense against herbivorous arthropods in the Carboniferous. Evol Ecol Res 4:779–786

    Google Scholar 

  • Kunert M, Biedermann A, Koch T, Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Separat Sci 25:677–684

    Article  CAS  Google Scholar 

  • Labandeira CC (2002) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions. Blackwell Publishing Ltd, Oxford, pp 26–74, 248–261

    Google Scholar 

  • Laothawornkitkul J, Moore JP, Taylor JE, Possell M, Gibson TD, Hewitt CN, Paul ND (2008) Discrimination of plant volatile signatures by an electronic nose: a potential technology for plant pest and disease monitoring. Environ Sci Tech 42:8433–8439. doi:10.1021/es801738s

    Article  CAS  Google Scholar 

  • Lerdau M, Gray D (2003) Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol 157:199–211

    Article  CAS  Google Scholar 

  • Loreto F, Schnitzler J-P (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Lyytikäinen P (1992) Comparison of the effects of artificial and natural defoliation on the growth of diprionid sawflies on Scots pine foliage. J Appl Entomol 114:57–66

    Article  Google Scholar 

  • Maffei ME, Mithöfer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68:2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232. doi:10.1023/A:1005453830961

    Article  CAS  Google Scholar 

  • Meiners T, Wäckers F, Lewis WJ (2003) Associative learning of complex odours in parasitoid host location. Chem Senses 28:231–236

    Article  CAS  PubMed  Google Scholar 

  • Monson RK, Grote R, Niinemets Ü, Schnitzler J-P (2012) Modeling the isoprene emission rate from leaves. New Phytol 195:541–559

    Article  CAS  PubMed  Google Scholar 

  • Moreira X, Sampedro L, Zas R, Solla A (2008) Alterations of the resin canal system of Pinus pinaster seedlings after fertilization of a healthy and of a Hylobius abietis attacked stand. Trees Struct Funct 22:771–777. doi:10.1007/s00468-008-0237-4

    Article  Google Scholar 

  • Mothershead K, Marquis RJ (2000) Fitness impacts of herbivory through indirect effects on plant-pollinator interactions in Oenothera macrocarpa. Ecology 81:30–40

    Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88:628–667. doi:10.1139/Z10-032

    Article  CAS  Google Scholar 

  • Mumm R, Hilker M (2005) The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem Senses 30:337–343. doi:10.1093/chemse/bji028

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Hilker M (2006) Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci 11:351–358. doi:10.1016/j.tplants.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Tiemann T, Varama M, Hilker M (2005) Choosy egg parasitoids: Specificity of oviposition-induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomol Exp Appl 115:217–225. doi:10.1111/j.1570-7458.2005.00262.x

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physico-chemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180

    Article  CAS  PubMed  Google Scholar 

  • Nordlander G, Eidmann HH, Jacobsson U, Nordenhem H, Sjödin K (1986) Orientation of the pine weevil Hylobius abietis to underground sources of host volatiles. Entomol Exp Appl 41:91–100

    Article  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35:5393–5409

    Article  CAS  Google Scholar 

  • Paiva NL (2000) An introduction to the biosynthesis of chemicals used in plant-microbe communication. J Plant Growth Regul 19:131–143. doi:10.1007/s003440000016

    CAS  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Paré PW, Farag MA, Krishnamachari V, Zhang H, Ryu C-M, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85:149–159. doi:10.1007/s11120-005-1001-x

    Article  PubMed  CAS  Google Scholar 

  • Paris CI, Llusià J, Peñuelas J (2011) Indirect effects of tending ants on holm oak volatiles and acorn quality. Plant Signal Behav 6:547–550. doi:10.4161/psb.6.4.14839

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237

    Article  Google Scholar 

  • Peñuelas J, Llusià J (2003) BVOCs: plant defense against climate warming? Trends Plant Sci 8:105–109

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404

    Article  PubMed  Google Scholar 

  • Peñuelas J, Filella I, Stefanescu C, Llusià J (2005) Caterpillars of Euphydryas aurinia (Lepidoptera: Nymphalidae) feeding on Succisa pratensis leaves induce large foliar emissions of methanol. New Phytol 167:851–857

    Article  PubMed  CAS  Google Scholar 

  • Peri E, Sole MA, Wajnberg E, Colazza S (2006) Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J Exp Biol 209:3629–3635. doi:10.1242/jeb.02416

    Article  PubMed  Google Scholar 

  • Pio C, Silva P, Cerqueira M, Nuñes T (2005) Diurnal and seasonal emissions of volatile organic compounds from cork oak trees. Atmos Environ 39:1817–1827. doi: 10.1016/j.atmosenv.2004.11.018

    Article  CAS  Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5, Tree physiology. Springer, Berlin, pp –

    Google Scholar 

  • Puente M, Magori K, Kennedy G, Gould F (2008) Impact of herbivore-induced plant volatiles on parasitoid foraging success: a spatial simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea system. J Chem Ecol 34:959–970. doi:10.1007/s10886-008-9472-9

    Article  CAS  PubMed  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58:501. doi:10.1641/B580607

    Article  Google Scholar 

  • Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936. doi:10.1111/j.1461-0248.2007.01084.x

    Article  PubMed  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261. doi:10.1016/j.tplants.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, Orlando, pp 3–54

    Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. Am Chem Soc Symp Ser 208:55–68. doi:10.1021/bk-1983-0208.ch004

    Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Biochemical interaction between plants and insects. Plenum Press, New York, pp 168–213

    Chapter  Google Scholar 

  • Roden DB, Mattson WJ (2008) Rapid induced resistance and host species effects on gypsy moth, Lymantria dispar (L.): Implications for outbreaks on three tree species in the boreal forest. Forest Ecol Manage 255:1868–1873

    Article  Google Scholar 

  • Rodriguez-Saona C, Chalmers J, Raj S, Thaler J (2005) Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143:566–577. doi:10.1007/s00442-005-0006-7

    Article  PubMed  Google Scholar 

  • Šmits A, Larsson S (1999) Effects of previous defoliation on pine looper larval performance. Agr Forest Entomol 1:19–26

    Article  Google Scholar 

  • Soler R, Harvey JA, Kamp AFD, Vet LEM, van der Putten WH, van Dam NM, Stuefer JF, Gols R, Hordijk CA, Bezemer TM (2007) Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376. doi:10.1111/j.2006.0030-1299.15501.x

    Article  CAS  Google Scholar 

  • Staudt M, Lhoutellier L (2007) Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves. Tree Physiol 27:1433–1440. doi:10.1093/treephys/27.10.1433

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Mandl N, Joffre R, Rambal S (2001) Intraspecific variability of monoterpene composition emitted by Quercus ilex leaves. Can J Forest Res 31:174–180. doi:10.1139/cjfr-31-1-174

    CAS  Google Scholar 

  • Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148. doi:10.1046/j.1570-7458.2003.00080.x

    Article  Google Scholar 

  • Stowe MK, Turlings TC, Loughrin JH, Lewis WJ, Tumlinson JH (1995) The chemistry of eavesdropping, alarm, and deceit. Proc Natl Acad Sci USA 92:23–28

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld NJ, Hildebrand JG (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–639

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354. doi:10.1007/BF02059811

    Article  CAS  Google Scholar 

  • Takasu K, Lewis WJ (2003) Learning of host searching cues by the larval parasitoid Microplitis croceipes. Entomol Exp Appl 108:77–86. doi:10.1046/j.1570-7458.2003.00070.x

    Article  Google Scholar 

  • Tamò C, Ricard I, Held M, Davison AC, Turlings TCJ (2006) A comparison of naïve and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours. Anim Biol 56:205–220

    Article  Google Scholar 

  • Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    Article  CAS  PubMed  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485. doi:10.1016/j.pbi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88. doi:10.1111/j.1365-2745.2010.01761.x

    Article  Google Scholar 

  • van der Putten WH, Vet LEM, Harvey JA, Wäckers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554. doi:10.1016/S0169-5347(01)02265-0

    Article  Google Scholar 

  • van Poecke RMP, Posthumus MA, Dicke M (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928. doi:10.1023/A:1012213116515

    Article  PubMed  Google Scholar 

  • Vet LEM (2001) Parasitoid searching efficiency links behaviour to population processes. Appl Entomol Zool 36:399–408. doi:10.1303/aez.2001.399

    Article  Google Scholar 

  • Vet LEM, Lewis WJ, Papaj DR, van Lenteren JC (2003) A variable-response model for parasitoid foraging behavior. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Cambridge, pp 25–39

    Chapter  Google Scholar 

  • von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant-herbivore interactions? Plant J 46:948–960. doi:10.1111/j.1365-313X.2006.02760.x

    Article  CAS  Google Scholar 

  • von Uexküll J (1926) Theoretical biology. Harcourt, Brace & Co, New York

    Google Scholar 

  • Wäckers FL, Lewis WJ (1999) A comparison of color-, shape- and pattern-learning by the hymenopteran parasitoid Microplitis croceipes. J Comp Physiol A 184:387–393. doi:10.1007/s003590050337

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216. doi:10.1007/s003440000026

    CAS  PubMed  Google Scholar 

  • Wang Q, Gu H, Dorn S (2003) Selection on olfactory response to semiochemicals from a plant-host complex in a parasitic wasp. Heredity 91:430–435. doi:10.1038/sj.hdy.6800340

    Article  CAS  PubMed  Google Scholar 

  • Weissteiner S, Schütz S (2006) Are different volatile pattern influencing host plant choice of belowground living insects. Mitt Dtsch Gesell Allg Ange Ent 15:51–55

    Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506. doi:10.1007/s00425-009-1076-2

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Yoneya K, Kugimiya S, Takabayashi J (2009) Do adult leaf beetles (Plagiodera versicolora) discriminate between odors from intact and leaf-beetle-infested willow shoots? J Plant Interact 4:125–129. doi:10.1080/17429140802710658

    Article  Google Scholar 

  • Yuan JS, Himanen SJ, Holopainen JK, Chen F, Stewart CN Jr (2009) Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 24:323–331

    Article  PubMed  Google Scholar 

  • Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147:599–608

    Article  Google Scholar 

  • Zas R, Sampedro L, Moreira X, Martíns P (2008) Effect of fertilization and genetic variation on susceptibility of Pinus radiata seedlings to Hylobius abietis damage. Can J Forest Res 38:63–72. doi:10.1139/X07-128

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Russell K. Monson and Deane Bowers for enlightening conversations and sharing their enthusiasm for plant-insect interactions. PCS also acknowledges funding from the National Science Foundation (‘Scaling ecosystem function: Novel Approaches from MaxEnt and Multiresolution’, Division of Biological Infrastructure #1021095) and the State of Montana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Trowbridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trowbridge, A.M., Stoy, P.C. (2013). BVOC-Mediated Plant-Herbivore Interactions. In: Niinemets, Ü., Monson, R. (eds) Biology, Controls and Models of Tree Volatile Organic Compound Emissions. Tree Physiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6606-8_2

Download citation

Publish with us

Policies and ethics