Skip to main content

Abstract

Malaria is one of the most important parasitic infections that account for an estimated prevalence of 500 million and more than one million casualties per annum. Due to the development of drug resistance in malarial parasites, it is cumbersome to treat and prevent malaria infection. Recently, development of resistance against artemisinin and its derivatives are documented from Cambodia-Thailand border. Keeping all that in mind there is an urgent need to develop new antimalarials from traditional medicine i.e. phytomedicine. This chapter summarises the approaches in phytomedicine to develop potential anti-malarial candidates. Based on in vivo and in vitro studies reporting activity against malarial parasites there is no doubt about the possibility to discover novel anti-malarials of plant origin in near future that could even combat the recent developing drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerele, O. (1993). Summary of WHO guideline for the assessment of herbal medicines. HerbalGram, 28, 13–17.

    Google Scholar 

  • Aramburu, J. G., Ramal Asayag, C., & Witzig, R. (1999). Malaria re-emergence in the Peruvian Amazon region. Emerging Infectious Diseases, 5, 209–215.

    Article  Google Scholar 

  • Azas, N., Laurencin, N., Delmas, F., et al. (2002). Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitology Research, 88, 165–171.

    Article  CAS  Google Scholar 

  • Becker, J. V. W., Merwe, M. M., van Brummelen, A. C., et al. (2000). In vitro anti-plasmodial activity of Dicoma anomala subsp. gerrardii (Asteraceae): Identification of its main active constituent, structure-activity relationship studies and gene expression profiling. Malaria Journal, 10, 295.

    Article  Google Scholar 

  • Bodeker, G., & Willcox, M. L. (2000). Conference report: The first international meeting of the Research Initiative on Traditional Antimalarial Methods (RITAM). Journal of Alternative Complementary Medicine, 6, 195–207.

    Article  CAS  Google Scholar 

  • Brandão, M. G. L., Kretlli, A. U., Soares, L. S. R., Nery, C. G. C., & Marinuzzi, H. C. (1997). Antimalarial activity of extracts and fractions from Bidens pilosa and other Bidens species (Asteraceae) correlated with the presence of acetylene and flavonoid compounds. Journal of Ethnopharmacology, 57, 131–138.

    Article  Google Scholar 

  • Carme, B., Bouguenty, J. C., & Plassart, H. (1993). Mortality and sequelae due to cerebral malaria in African children in Brazaville, Congo. The American Journal of Tropical Medicine and Hygiene, 48, 216–221.

    CAS  Google Scholar 

  • Chaudhury, D. S., Sinha, S., Ghosh, S. K., et al. (1987). Report of a case of P. falciparum malaria resistant to chloroquine and combination of sulfalene and pyrimethamine in Delhi. Indian Journal of Medical Research, 24, 95–96.

    Google Scholar 

  • Chung, I. M., Kim, M. Y., & Moon, H. I. (2008). Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitology Research, 103, 341–344.

    Article  Google Scholar 

  • Clyde, D. F. (1987). Variations in response of malaria parasite to drugs in Asia and Oceania. La Medicina Tropicalis, 3, 3–215.

    Google Scholar 

  • de Andrade-Neto, V. F., Brandão, M. G., Nogueira, F., et al. (2008). Ampelozyziphus amazonicus Ducke (Ramnaceae), a medicinal plant used to prevent malaria in the Amazon Region, hampers the development of Plasmodium berghei sporozoites. International Journal of Parasitology, 38, 1505–1511.

    Article  CAS  Google Scholar 

  • de Mesquita, M. L., Grellier, P., Mambu, L., de Paula, J. E., & Espindola, L. S. (2007). In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. Journal of Ethnopharmacology, 110, 165–170.

    Article  Google Scholar 

  • Dondorp, A. M., Nosten, F., & Yi, P. (2009). Artemisinin resistance in Plasmodium falciparum malaria. The New England Journal of Medicine, 361, 455–467.

    Article  CAS  Google Scholar 

  • Efange, S. M., Brun, R., Wittlin, S., et al. (2009). Okundoperoxide, a bicyclic cyclofarnesylsesquiterpene endoperoxide from Scleria striatinux with antiplasmodial activity. Journal of Natural Products, 72, 280–283.

    Article  CAS  Google Scholar 

  • Greenwood, B. M., Bojang, K., Whitty, C., et al. (2005). Malaria. Lancet, 365, 1487–1498.

    Article  CAS  Google Scholar 

  • Guyatt, H. L., & Snow, R. W. (2001). The epidemiology and burden of Plasmodium falciparum-­related anemia among pregnant women in sub-Saharan Africa. The American Journal of Tropical Medicine and Hygiene, 64(Suppl. 1), 36–44.

    CAS  Google Scholar 

  • Habila, J. D., Shode, F. O., & Ndukwe, G. I. (2011). Novel antimalarial agent (Cinnamic 3β hydroxyolean-12-en-28-carboxylic anhydride): Synthesis, characterization and in vivo studies. African Journal of Pharmacy and Pharmacology, 5(24), 2667–2675.

    Article  CAS  Google Scholar 

  • Hastings, I. M. F., & D’Alessandro, U. (2000). Modeling a predictable disaster: The rise and spread of drug resistant malaria. Parasitology Today, 16, 340–347.

    Article  CAS  Google Scholar 

  • Iwalewa, E. O., Omisore, N. O., Adewunmi, C. O., et al. (2008). Anti-protozoan activities of Harungana madagascariensis stem bark extract on trichomonads and malaria. Journal of Ethnopharmacology, 117, 507–511.

    Article  CAS  Google Scholar 

  • Iwu, M. W., Duncan, A. R., & Okunji, C. O. (1999). New antimicrobials of plant origin. In J. Janick (Ed.), Perspectives in new crops and new uses (pp. 457–462). Alexandria: ASHS Press.

    Google Scholar 

  • Jiofack, T., Ayissi, C., Fokunang, N., et al. (2009). Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. African Journal of Pharmacy and Pharmacology, 3(4), 144–150.

    Google Scholar 

  • Kamatou, G. P. P., Van Zyl, R. L., Davids, H., et al. (2008). Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. South African Journal of Botany, 74, 238–243.

    Article  CAS  Google Scholar 

  • Khan, H. M., Shujatullah, F., Raza, A., Akhtar, A., & Gupta, S. (2012). Seasonal variations in vector borne infections-Malaria & Dengue. Journal of Pure and Applied Microbiology, 6(Spl Edn), 59–62.

    Google Scholar 

  • Kolawole, O. M., & Adesoye, A. A. (2010). Evaluation of the antimalarial activity of Bridelia ferruginea benth bark. The Canadian Journal of Pure and Applied Sciences, 4, 1039–1044.

    CAS  Google Scholar 

  • Kotnis, M. S., Patel, P., Menon, S. N., et al. (2004). Renoprotective effect of Hemisdesmus indicus, a herbal drug used in gentamicin-induced renal toxicity. Nephrology (Carlton, Vic.), 3, 142–152.

    Article  Google Scholar 

  • Lei, S. H., Bodeker, G., & Changshan. (2004). (Dichroa febrifuga) ancient febrifuge and modern antimalarial: Lessons for research from a forgotten tale. In M. Willcox, G. Bodeker, & P. Rasoanaivo (Eds.), Traditional medicinal plants and malaria. Boca Raton: CRC Press.

    Google Scholar 

  • Lenta, B. N., Ngouela, S., Boyom, F. F., et al. (2007). Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis LAM, (Hypericaceae). Chemical and Pharmaceutical Bulletin, 55, 464–467.

    Article  CAS  Google Scholar 

  • Lopes, N. P., Kato, M. J., Andrade, E. H. A., et al. (1999). Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. By Waiãpi Amazon Indians. Journal of Ethnopharmacology, 67, 313–319.

    Article  CAS  Google Scholar 

  • Mishra, S. P. (1996). In vivo resistance to chloroquine and sulphapyrimethamine combination in P. falciparum in India. Proceedings of National Academy of Science India, 66, 123–128.

    Google Scholar 

  • Moein, M. R., Pawar, R. S., Khan, S. I., et al. (2008). Antileishmanial, antiplasmodial and cytotoxic activities of 12,16-dideoxy aegyptinone B from Zhumeria majdae Rech.f. & Wendelbo. Phytotherapy Research, 22, 283–285.

    Article  CAS  Google Scholar 

  • Mohamad, K., Hirasawa, Y., Litaudon, M., et al. (2009). Ceramicines B-D, new antiplasmodial limonoids from Chisocheton ceramicus. Bioorganic & Medicinal Chemistry, 17, 727–730.

    Article  CAS  Google Scholar 

  • Moon, H. I. (2007). Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitology Research, 100, 1147–1149.

    Article  Google Scholar 

  • Murphy, S. C., & Breman, J. G. (2001). Gaps in the childhood malaria burden in Africa: Adding cerebral malaria, neurological sequelae, anemia, respiratory distress, hypoglycemia and complications of pregnancy to the calculus. The American Journal of Tropical Medicine and Hygiene, 64(Suppl. 1), 57–67.

    CAS  Google Scholar 

  • Noedl, H., Se, Y., Schaecher, K., et al. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. The New England Journal of Medicine, 359, 2619–2620.

    Article  CAS  Google Scholar 

  • Olakunle, O. K., Mark, L., Biaffra, E., et al. (2005). Effects of root extracts of Fagara zanthoxyloides on the In vitro growth and stage distribution of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 49(1), 264–268.

    Article  Google Scholar 

  • Oliveira, F. Q., Andrade-Neto, V., Kretlli, A. U., & Brandão, M. G. L. (2004). New evidences of antimalarial activity of Bidens pilosa roots extract correlated with polyacetylene and flavonoids. Journal of Ethno-pharmacology, 93, 39–42.

    Article  CAS  Google Scholar 

  • Oliveira, A. B., Dolabela, M. F., Braga, F. C., et al. (2009). Plant-derived antimalarial agents: New leads and efficient phythomedicines. Part I. Alkaloids. Anais da Academia Brasileira de Ciências, 81, 715–740.

    Article  CAS  Google Scholar 

  • Ortet, R., Prado, S., Mouray, E., & Thomas, O. P. (2008). Sesquiterpene lactones from the endemic Cape Verdean Artemisia gorgonum. Phytochemistry, 69, 2961–2965.

    Article  CAS  Google Scholar 

  • Patwardhan, B., Mashelkar, R. A., Patwardhan, B., & Mashelkar, R. A. (2009). Traditional medicine-­inspired approaches to drug discovery: Can Ayurveda show the way forward? Drug Discovery Today, 14, 804–811.

    Article  Google Scholar 

  • Pedersen, M. M., Chukwujekwu, J. C., Lategan, C. A., et al. (2009). Antimalarial sesquiterpene lactones from Distephanus angulifolius. Phytochemistry, 70, 601–607.

    Article  CAS  Google Scholar 

  • Petrovick, P. R., Marques, L. C., & Paula, I. C. (1999). New rules for phytopharmaceutical drug registration in Brazil. Journal of Ethnopharmacology, 66, 51–55.

    Article  CAS  Google Scholar 

  • Pickard, A. L., & Wernsdorfer, W. H. (2002). Epidemiology of drug resistant malaria. The Lancet Infectious Diseases, 2, 209–218.

    Article  Google Scholar 

  • Prado, S., Michel, S., Tillequin, F., et al. (2004). Synthesis and cytotoxic activity of benzo[c][1,7] and [1,8] phenanthrolines analogues of nitidine and fagaronine. Bioorganic & Medicinal Chemistry, 12, 3943–3953.

    Article  CAS  Google Scholar 

  • Presber, W., Hegenscheid, B., Hernandez-Alvarez, H., et al. (1992). Inhibition of the growth of Plasmodium falciparum and Plasmodium berghei in vitro by an extract of Cochlospermum angolense (Welw.). Acta Tropica, 50, 331–338.

    Article  CAS  Google Scholar 

  • Ramanandraibe, V., Grellier, P., Martin, M. T., et al. (2008). Antiplasmodial phenolic compounds from Piptadenia pervillei. Planta Medica, 74, 417–421.

    Article  CAS  Google Scholar 

  • Raza, A., Khan, H. M., Malik, M. A., et al. (2009). Serum retinol concentration in patients with acute falciparum malaria in Aligarh, India. Journal of Infection in Developing Countries, 3(11), 865–868.

    CAS  Google Scholar 

  • Roersch, C. M. F. B. (2010). Piper umbellatum L.: A comparative cross-cultural analysis of its medicinal uses and an ethnopharmacological evaluation. Journal of Ethnopharmacology, 131, 522–537.

    Article  Google Scholar 

  • Sehgal, P. N., Sharma, N. I. D., Sharma, S. I., et al. (1973). Resistance to chloroquine in falciparum malaria in Assam state. Indian Journal of Communicable Diseases, 5, 175–180.

    Google Scholar 

  • Steketee, R. W., Nahlen, B. L., Parise, M. E., et al. (2001). The burden of malaria in pregnancy in malaria-endemic areas. The American Journal of Tropical Medicine and Hygiene, 64(Suppl. 1), 28–35.

    CAS  Google Scholar 

  • Trape, J. F. (2001). The public health impact of chloroquine resistance in Africa. The American Journal of Tropical Medicine and Hygiene, 64(1–2 Suppl), 12–17.

    CAS  Google Scholar 

  • Uniyal, B. (2003). Utilization of medicinal plants by the rural women of Kulu, Himachal Pradesh. Indian Journal of Traditional Knowledge, 2(4), 366–370.

    Google Scholar 

  • Varughese, G., Sabulal, B., & Anil, J. J. (2010). Ethnomedicinal plants in parasitic infections. In D. Chattopadhyay (Ed.), Ethnomedicine: A Source of Complementary Therapeutics (pp. 53–116). Thiruvananthapuram: Phytochemistry and Phytopharmacology Division, Tropical Botanic Garden and Research Institute Pacha-Palode.

    Google Scholar 

  • Vasconcelos, K. F., Plowe, C. V., Fontes, C. J., et al. (2000). Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase of isolates from the Amazon region of Brazil. Memórias do Instituto Oswaldo Cruz, 95, 721–728.

    Article  CAS  Google Scholar 

  • White, N. J. (2004). Antimalarial drug resistance. The Journal of Clinical Investigation, 113, 1084–1092.

    CAS  Google Scholar 

  • WHO. (2001). Legal status of traditional medicines and complementary/alternative medicine: A worldwide review (p. 1). Geneva: WHO.

    Google Scholar 

  • WHO, IUCN, & WWF. (1993). Guidelines on the conservation of medicinal plants. Gland: IUCN.

    Google Scholar 

  • Willcox, M. L., Graz, B., Falquet, J., et al. (2011). A “reverse pharmacology” approach for developing an anti-malarial phytomedicine. Malaria Journal, 10(Suppl 1), S8.

    Article  Google Scholar 

  • Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H., & Meshnick, S. R. (2002). Epidemiology of drug-resistant malaria. The Lancet Infectious Diseases, 2, 209–218.

    Article  CAS  Google Scholar 

  • Worrall, E., Rietveld, A., & Delacollette, C. (2004). The burden of malaria epidemics and cost-­effectiveness of interventions in epidemic situations in Africa. The American Journal of Tropical Medicine and Hygiene, 71(Suppl. 2), 136–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raza, A., Shujatullah, F., Khan, H.M., Shahid, M., Malik, A. (2013). Malaria and Phytomedicine. In: Shahid, M., Shahzad, A., Malik, A., Sahai, A. (eds) Recent Trends in Biotechnology and Therapeutic Applications of Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6603-7_11

Download citation

Publish with us

Policies and ethics