Skip to main content

Phage Therapy

  • Chapter
  • First Online:
Biotherapy - History, Principles and Practice

Abstract

Phage therapy is the use of bacteriophages – viruses that can only infect bacteria – to treat bacterial infections. In some parts of the world, phages have been used therapeutically since the 1930s.

Phage therapy was first developed at the Pasteur Institute in Paris early in the twentieth century and soon spread through Europe, the US, the Soviet Union and other parts of the world, but with mixed success. Since the advent of chemical antibiotics in the 1940s, it has been largely ignored in the West, while still being used to varying degrees in some countries, with major claims of success. Today, however, the resurgence of bacteria that are resistant to most or all available antibiotics is precipitating a major health crisis, and interest is growing in the potential use of phage to complement antibiotics as a way to fight infection. This chapter has been written to put phage therapy into historical and ecological perspective and to briefly explore the very interesting early research in France, the US and Eastern Europe as well as growing recent studies worldwide. Here, we discuss the nature of phage and the mechanisms of phage infection of bacteria, examine an existing body of research indicating the potential for a widespread application of phage use as treatment and prevention of various pathologies and present details of specific clinical phage applications. Phages specific for virtually every well-studied bacterial species have now been isolated and characterized. It has become clear that phages play the major role in maintaining the bacterial balance throughout nature; for example, at any given time a substantial fraction of the bacteria in the oceans are infected with replicating phage, which are thus key in the cycling of nutrients as well as in preventing overgrowth by any particular bacterial species. The reported results of early phage therapy work worldwide and of more recent French and Eastern European therapeutic phage applications are very encouraging in terms of such factors as lack of side effects and interactions with other medications as well as of efficacy, particularly as our understanding of phage biology and ecology has grown enormously. However, since most clinical application reports involved individualized applications to infections recalcitrant to all other available treatments rather than the double-blind clinical trials so prized by Western medicine, they have often been disregarded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon S (2011) Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 77:1–40

    Article  PubMed  Google Scholar 

  • Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47

    Article  PubMed  CAS  Google Scholar 

  • Abedon S, Kuhl S, Blasdel B, Kutter E (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    Article  PubMed  Google Scholar 

  • Alavidze Z, Meiphariani A, Dzidzishvili L, Chkonia I, Goderdzishvili M, Kvatadze N, Jgenti D, Makhatadze N, Gudumidze N, Gvasalia G (2007) Treatment of the complicated forms of inflamatory wounds by bacteriophages. Med J Ga 2:123–127

    Google Scholar 

  • Appelmans R (1921) Le bacteriophage dans l’organisme. C R Seances Soc Biol Fil 85:722–724

    Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36:50–53

    Article  PubMed  Google Scholar 

  • Bergh O, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  PubMed  CAS  Google Scholar 

  • Bogovazova GG, Voroshilova NN, Bondarenko VM et al (1992) Immunobiological properties and therapeutic effectiveness of preparations from Klebsiella bacteriophages. Zh Mikrobiol Epidemiol Immunobiol 3:30–33

    PubMed  Google Scholar 

  • Boyd EF (2005) Bacteriophages and bacterial virulence. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 223–266

    Google Scholar 

  • Bruessow H (n.d.) Antibacterial treatment against diarrhea in oral rehydration solution. http://www.clinicaltrials.gov/ct2/show/NCT00937274. Accessed 4 Mar 2012

  • Brüssow H (2007) Phage therapy: the Western perspective. In: Mc Grath S, van Sinderen D (eds) Bacteriophage: genetics and microbiology. Caister Academic Press, Norfolk, pp 159–192

    Google Scholar 

  • Brüssow H (2012) What is needed for phage therapy to become a reality in Western medicine? Virology 434(2):138–142

    Article  PubMed  Google Scholar 

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  PubMed  CAS  Google Scholar 

  • Bruynoghe R, Maisin J (1921) Essais de thérapeutique au moyen du bactériophage du Staphylocoque. C R Soc Biol 85:1120–1121

    Google Scholar 

  • Caldwell JA (1928) Baceriologic and bacteriophagic study of infected urines. J Infect Dis 43:353–362

    Article  Google Scholar 

  • Campbell A (2006) General aspects of lysogeny. In: Calendar R (ed) The bacteriophages. Oxford University Press, Oxford, pp 66–73

    Google Scholar 

  • Carmody LA, Gill JJ, Summer EJ, Sajjan US, Gonzalez CF, Young RF, LiPuma JJ (2010) Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis 201:264–271

    Article  PubMed  CAS  Google Scholar 

  • Chanishvili N (2012) A literature review of the practical application of bacteriophage research. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Chanishvili N, Sharp R (2009) A literature review of the practical application of bacteriophage research. Eliava Institute, Tbilisi

    Google Scholar 

  • Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, Sarker SA, Brüssow H (2004) Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186(24):8287–8294

    Article  PubMed  CAS  Google Scholar 

  • Deghorain M, van Melderen L (2012) The staphylococcal phages family: an overview. Viruses 4:3316–3335

    Article  PubMed  Google Scholar 

  • d’Herelle F (1922) The bacteriophage: its role in immunity (trans: Smith GH). Williams & Wilkins, Baltimore

    Google Scholar 

  • d’Herelle F (1938) Appendix from: Le Phénomene de la Gueras (trans: Kuhl S, Mazure H), Bacteriophage 1(2011):55–65

    Google Scholar 

  • Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201(7):1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Denou E, Bruttin A, Barretto C, Ngom-Bru C, Brüssow H, Zuber S (2009) T4 phages against Escherichia coli diarrhea: potential and problems. Virology 388(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Desranleau JM (1949) Progress in the treatment of typhoid fever with Vi bacteriophages. Can J Public Health 40:473–478

    PubMed  CAS  Google Scholar 

  • Dublanchet A (2009) Des virus pour combattre les infections: la phagothérapie. Favre, Lausanne

    Google Scholar 

  • Dubos RJ, Straus JH, Pierce C (1943) The multiplication of bacteriophage in vivo and its protective effects against an experimental infection with Shigella dysenteriae. J Exp Med 78:161–168

    Article  PubMed  CAS  Google Scholar 

  • Eaton MD, Bayne-Jones S (1934) Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections (I). JAMA 103:1769–1776, 1847–1853 and 1934–1939

    Article  CAS  Google Scholar 

  • Evans AC (1933) Inactivation of antistreptococcus bacteriophage by animal fluids. Public Health Rep 48:411–446

    Article  CAS  Google Scholar 

  • Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME (1997) Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blind trial. Clin Infect Dis 24:324–333

    Article  PubMed  CAS  Google Scholar 

  • Friedman DI, Court DL (2001) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4:201–207

    Article  PubMed  CAS  Google Scholar 

  • Geier MR, Attallah AF, Merril CR (1975) Characterization of Escherichia coli bacterial viruses in commercial sera. In Vitro 11:55–58

    Article  PubMed  CAS  Google Scholar 

  • Górski A, Wazna E, Dabrowska BW, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46(3):313–319

    Article  PubMed  Google Scholar 

  • Górski A, Miedzybrodzki R, Borysowski J et al (2009) Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 10:766–774

    PubMed  Google Scholar 

  • Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M, Korczak-Kowalska G, Olszowska-Zaremba N, Łusiak-Szelachowska M, Kłak M, Jończyk E, Kaniuga E, Gołaś A, Purchla S, Weber-Dąbrowska B, Letkiewicz S, Fortuna W, Szufnarowski K, Pawełczyk Z, Rogoż P, Kłosowska D (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71

    Article  PubMed  Google Scholar 

  • Häusler T (2003) Gesund durch Viren. Piper, Munich

    Google Scholar 

  • Häusler T (2006) Viruses vs. superbugs: a solution to the antibiotic crisis. Macmillan, New York

    Google Scholar 

  • Hawkins C, Harper D, Burch D, Anggård E, Soothill J (2010) Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146:309–313

    Article  PubMed  Google Scholar 

  • Karumidze N, Thomas JA, Kvatadze N, Goderdzishvili M, Hakala KW, Weintraub ST, Alavidze Z, Hardies SC (2012) Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94(6):1609–1617

    Article  PubMed  CAS  Google Scholar 

  • Katsarava R, Beridze V, Arabuli N et al (1999) Amino acid-based bioanalogous polymers. Synthesis and study of regular poly (ester amide)s based on bis(a-amino acid), alpha, omega-alkylene diesters, and aliphatic dicarboxylic acids. J Polym Sci 37:391–407

    CAS  Google Scholar 

  • King WE, Boyd DA, Conlin JH (1934) The cause of local reactions following the administration of Staphylococcus bacteriophage. Am J Clin Pathol 4:336–345

    Google Scholar 

  • Knouf EG, Ward WE, Reichle PA et al (1946) Treatment of typhoid fever with type specific bacteriophage. JAMA 132:134–138

    Article  CAS  Google Scholar 

  • Krylov V, Shaburova O, Krylov S, Pleteneva E (2012) A genetic approach for the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses 4. doi:10.3390/v40x00x

  • Kuhl S, Mazure H (2011) F. D’Herelle preparation of therapeutic bacteriophages. From: Le Phénomène de la Guérison dans les maladies infectieuses, 1938, Masson et Cie, Paris – Appendix I (translated into English by Kuhl S, Mazure H). Bacteriophage 1:3–13

    Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595

    Article  PubMed  CAS  Google Scholar 

  • Kutter E (2008) Phage therapy: bacteriophages as naturally occurring antimicrobials. In: Goldman E, Green LH (eds) Practical handbook of microbiology. CRC Press, Boca Raton, pp 713–730

    Chapter  Google Scholar 

  • Kutter E (2009) Bacteriophage therapy: past and present. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, New York, pp 258–266

    Chapter  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and application. CRC Press, Boca Raton

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Kutter E, Borysowski J, Międzybrodzki R, Górski A, Kutateladze M, Alavidze Z, Goderdzishvili M, AdamiaR (2013) Clinical phage therapy. In: Borysowski J et al (eds) Phage therapy: current research and applications. Caister Academic Press (in press)

    Google Scholar 

  • Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4(5):643–650

    Article  PubMed  CAS  Google Scholar 

  • Lang LH (2006) FDA approves use of bacteriophages to be added to meat and poultry products. Gastroenterology 131(5):1370

    PubMed  Google Scholar 

  • Larkum NW (1929) Bacteriophage from public health standpoint. Am J Public Health 19:31–36

    Article  CAS  Google Scholar 

  • Leszczyński P, Weber-Dąbrowska B, Kohutnicka M, Łuczak M, Górecki A, Górski A (2006) Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker – case report. Folia Microbiol (Praha) 51(3):236–238

    Article  Google Scholar 

  • Letarov AV, Golomidova AK, Tarasyan KK (2010) Ecological basis of rational phage therapy. Acta Naturae 2:60–71

    PubMed  CAS  Google Scholar 

  • Letkiewicz S, Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Górski A (2009) Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis – case report. Folia Microbiol (Praha) 54:457–461

    Article  CAS  Google Scholar 

  • Little J (2006) Gene regulatory circuit of phage lambda. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, Oxford, pp 74–82

    Google Scholar 

  • Lobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Glowacka A (2012) Genomics of staphylococcal Twort-like phages – potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216

    Article  PubMed  CAS  Google Scholar 

  • MacNeal WJ, Frisbee FC, McRae MA (1942) Staphylococcemia 1931–1940. Five hundred patients. Am J Clin Pathol 12:281–294

    Google Scholar 

  • Maisin RJ (1921) Essais de therapeutique au moyen du bacteriophage du staphylocoque. C R Soc Biol 85:1120–1121

    Google Scholar 

  • Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly (ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41:453–458

    Article  PubMed  CAS  Google Scholar 

  • Marza JAS, Soothill JS, Boydell P, Collyns TA (2006) Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 32:644–646

    Article  PubMed  Google Scholar 

  • Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, DeCorte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944

    Article  PubMed  Google Scholar 

  • Merril CR, Friedman TB, Attallah AF (1972) Isolation of bacterophages from commercial sera. In Vitro 8:91–93

    Article  PubMed  CAS  Google Scholar 

  • Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A (2007) Phage therapy of staphylococcal infections (including MRSA) may be less expensive than antibiotic treatment. Postepy Hig Med Dosw 61:461–465

    Google Scholar 

  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E, Górski A (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121

    Article  PubMed  Google Scholar 

  • Milch H, Fornosi F (1975) Bacteriophage contamination in live poliovirus vaccine. J Biol Stand 3:2307–2310

    Article  Google Scholar 

  • Moody EE, Trousdale MD, Jorgensen JH, Shelokov A (1975) Bacteriophages and endotoxin in licensed live-virus vaccines. J Infect Dis 131:588–591

    Article  PubMed  CAS  Google Scholar 

  • Montclos H (2002) Les bacteriophages therapeutique: de l’emprirism ala biologie moleculaire. Pyrexie 6:77–80

    Google Scholar 

  • Morton HE, Engely FB (1945) Dysentery bacteriophage: review of the literature on its prophylactic and therapeutic uses in man and in experimental infections in animals. JAMA 17:584–891

    Google Scholar 

  • Pirnay JP, Verbecken G, Rose R, Jennes S, Zizl M, Huys I, Lavigne R, Merabishvili M, Vaneechoutte M, Buckling A, De Vos D (2012) Introducing yesterday’s phage therapy in today’s medicine. Future Virol 7:379–390

    Article  CAS  Google Scholar 

  • Slopek S, Durlakowa I, Weber-Dabrowska B, Kucharewicz-Krukowska A, Dabrowski M, Bisikiewicz R (1983a) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Exp 31:267–291

    CAS  Google Scholar 

  • Slopek S, Durlakowa I, Weber-Dabrowska B, Kucharewicz-Krukowska A, Dabrowski M, Bisikiewicz R (1983b) Results of bacteriophage treatment of suppurative bacterial infections. II. Detailed evaluation of the results. Arch Immunol Ther Exp (Warsz) 31(3):293–327

    CAS  Google Scholar 

  • Slopek S, Durlakowa I, Weber-Dąbrowska B, Dąbrowski M, Kucharewicz-Krukowska A (1984) Results of bacteriophage treatment of suppurative bacterial infections. III. Detailed evaluation of the results obtained in further 150 cases. Arch Immunol Ther Exp 32:317–335

    CAS  Google Scholar 

  • Slopek S, Kucharewicz-Krukowska A, Weber-Dabrowska B, Dabrowski M (1985a) Results of bacteriophage treatment of suppurative bacterial infections. VI. Analysis of treatment of suppurative staphylococcal infections. Arch Immunol Ther Exp 33:261–273

    CAS  Google Scholar 

  • Slopek S, Kucharewicz-Krukowska A, Weber-Dąbrowska B, Dąbrowski M (1985b) Results of bacteriophage treatment of suppurative bacterial infections. V. Evaluation of the results obtained in children. Arch Immunol Ther Exp 33:241–259

    CAS  Google Scholar 

  • Slopek S, Kucharewicz-Krukowska A, Weber-Dąbrowska B, Dąbrowski M (1985c) Results of bacteriophage treatment of suppurative bacterial infections. IV. Evaluation of the results obtained in 370 cases. Arch Immunol Ther Exp 33:219–240

    CAS  Google Scholar 

  • Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz) 35:569–583

    CAS  Google Scholar 

  • Smith HW, Huggins RB (1982) Successful treatment of experimental E. coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins RB (1983) Effectiveness of phages in treating experimental E. coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129:2659–2675

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins RB (1987) The control of experimental E. coli diarrhea in calves by means of bacteriophage. J Gen Microbiol 133:1111–1126

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins RB, Shaw KM (1987) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133:1127–1135

    PubMed  CAS  Google Scholar 

  • Straub ME, Appelbaum M (1933) Studies on commercial bacteriophage products. JAMA 100:110–113

    Article  Google Scholar 

  • Sulakvelidze A, Barrow P (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 335–380

    Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 381–436

    Google Scholar 

  • Sulakvelidze A, Alavidze A, Morris J (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  PubMed  CAS  Google Scholar 

  • Summers WC (1999) Felix d’Herelle and the origins of molecular biology. Yale University Press, New Haven

    Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Ann Rev Microbiol 55:437–451

    Article  CAS  Google Scholar 

  • Vandenbroucke JP (2004) When are observational studies as credible as randomized trials? Lancet 363:1728–1731

    Article  PubMed  Google Scholar 

  • Vandersteegen K, Mattheus W, Ceyssens PJ, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2012) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6(9):e24418

    Article  Google Scholar 

  • Verbeken G, Pirnay JP, De Vos D, Jennes S, Zizi M, Lavigne R, Casteels M, Huys I (2012) Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp (Warsz) 60(3):161–172

    Google Scholar 

  • Vieu JF (1961) Intérêt des bactériophages dans le traitement de staphylococcies. Vie Med 42:823–829

    PubMed  CAS  Google Scholar 

  • Vieu JF (1975) Les bacteriphages. In: Fabre J (ed) Traité de therapeutique, Serums et vaccins. Flammarion, Paris, pp 337–430

    Google Scholar 

  • Vieu JF, Guillermet F, Minck R et al (1979) Données actuelles sure les applications therapeutiques des bacteriophages. Bull Acad Natl Med 163:61–66

    PubMed  CAS  Google Scholar 

  • Waldor M, Friedman D, Adha S (2005) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press, Washington, DC

    Google Scholar 

  • Ward WE (1943) Protective action of VI bacteriophage in Eberthella typhi infections in mice. J Infect Dis 72:172–176

    Article  Google Scholar 

  • Weber-Dabrowska B, Debrowska M, Slopek S (1987) Studies on bacteriophage penetration in patients subjected to phage therapy. Arch Immunol Ther Exp (Warsz) 35:363–368

    Google Scholar 

  • Weber-Dabrowska B, Mulczyk M, Gorski A (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp 48:547–551

    CAS  Google Scholar 

  • Weber-Dabrowska B, Mulczyk M, Górski A (2001) Bacteriophage therapy for infections in cancer patients. Clin Appl Immunol Rev 1:131–134

    Article  Google Scholar 

  • Weber-Dąbrowska B, Mulczyk M, Górski A (2003) Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35(4):1385–1386

    Google Scholar 

  • Wright A, Hawkins CH, Anggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357

    Article  PubMed  CAS  Google Scholar 

  • Yeung MK, Kozelsky CS (1997) Transfection of Actinomyces spp. by genomic DNA of bacteriophages from human dental plaque. Plasmid 35:141–153

    Article  Google Scholar 

Download references

Acknowledgments

We especially appreciate the efforts of Drs Liana Gachechiladze, Amiran Meipariani, Nino Chanishvili, Mzia Kutateladze, Rezo Adamia, Ramaz Katsarava and their colleagues in Tbilisi and of Beata Weber-Dabrowski, Andre Gorski, and others in Wroclaw to further develop phage therapy and help us understand the extensive therapeutic work carried out there. We express our thanks also to the many phage biologists and health-care personnel now working to bring phage therapy back into the Western World.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Kutter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kutter, E.M., Gvasalia, G., Alavidze, Z., Brewster, E. (2013). Phage Therapy. In: Grassberger, M., Sherman, R., Gileva, O., Kim, C., Mumcuoglu, K. (eds) Biotherapy - History, Principles and Practice. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6585-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6585-6_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6584-9

  • Online ISBN: 978-94-007-6585-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics