Skip to main content

Colonic Manometry: What Do the Squiggly Lines Really Tell Us?

  • Chapter
  • First Online:
New Advances in Gastrointestinal Motility Research

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 10))

Abstract

Colonic motility consists of a range of motor patterns that ensure net flow rates appropriate for the break down of food, absorption of water and nutrients and excretion of waste. Abnormalities in these motor patterns remain a leading hypothesis to explain the cause of functional colonic disorders such as constipation. However, whilst manometric catheters are used as one of the primary tools to record colonic motor patterns, we are as yet unable to define motor patterns that clearly separate patients from controls. Indeed in many instances while some changes in the patterns of manometric squiggly lines can be identified, it remains a matter of intuition and speculation as to how these changes may relate to a patient’s symptoms. In this chapter, motor patterns recorded by colonic manometry will be compared to description of colonic wall motion and luminal transit. In doing so the chapter will attempt to detail what manometry is really telling us about colonic function. In addition the future direction and current advances in colonic manometry will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez WC (1948) An introduction to gastroenterology, 4th edn. Paul B Hoeber Inc., New York

    Google Scholar 

  2. Arkwright JW, Underhill ID, Maunder SA, Blenman NG, Szczesniak MM, Wiklendt L, Lubowski DZ, Cook IJ, Dinning PG (2009) Design of a high-sensor count fibre optic manometry catheter for in vivo colonic diagnostics. Opt Express 17(25):22423–22431

    Article  PubMed  Google Scholar 

  3. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ (2001) Prolonged multi-point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol 96(6):1838–1848

    Article  PubMed  CAS  Google Scholar 

  4. Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, de Carle DJ, Cook IJ (2000) Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. Am J Gastroenterol 95(4):1027–1035

    Article  PubMed  CAS  Google Scholar 

  5. Barclay AE (1912) Note on the movements of the large intestine. Br J Roentgenol 16:422–424

    Google Scholar 

  6. Barclay AE (1935) Direct X-ray cinematography with a preliminary note on the nature of the non-propulsive movements of the large intestine. Br J Radiol 8:652–658

    Article  Google Scholar 

  7. Bassotti G, Betti C, Pelli MA, Morelli A (1992) Extensive investigation on colonic motility with pharmacological testing is useful for selecting surgical options in patients with inertia colica. Am J Gastroenterol 87(1):143–147

    PubMed  CAS  Google Scholar 

  8. Bassotti G, Chiarioni G, Vantini I, Betti C, Fusaro C, Pelli MA, Morelli A (1994) Anorectal manometric abnormalities and colonic propulsive impairment in patients with severe chronic idiopathic constipation. Dig Dis Sci 39(7):1558–1564

    Article  PubMed  CAS  Google Scholar 

  9. Bassotti G, Clementi M, Antonelli E, Pelli MA, Tonini M (2001) Low-amplitude propagated contractile waves: a relevant propulsive mechanism of human colon. Dig Liv Dis 33(1):36–40

    Article  CAS  Google Scholar 

  10. Bassotti G, de Roberto G, Castellani D, Sediari L, Morelli A (2005) Normal aspects of colorectal motility and abnormalities in slow transit constipation. World J Gastroenterol 11(18):2691–2696

    PubMed  Google Scholar 

  11. Bassotti G, Gaburri M (1988) Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am J Physiol Gastrointest Liver Physiol 255:G660–664

    CAS  Google Scholar 

  12. Bassotti G, Imbimbo BP, Betti C, Dozzini G, Morelli A (1992) Impaired colonic motor response to eating in patients with slow transit constipation. Am J Gastroenterol 87:504–508

    PubMed  CAS  Google Scholar 

  13. Bazzocchi G, Ellis J, Villanueva-Meyer J, Fain JW, Jing J, Mena I, Snape WJ (1990) Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology 96:686–693

    Google Scholar 

  14. Bedrich M, Ehrlein H (2001) Motor function of the large intestine and flow of digesta in sheep. Small Rumin Res 42:141–155

    Article  Google Scholar 

  15. Bharucha AE (2007) Constipation. Best Pract Res Clin Gastroenterol 21(4):709–731

    Article  PubMed  Google Scholar 

  16. Brown AJ, Horgan AF, Anderson JH, McKee RF, Finlay IG (1999) Colonic motility is abnormal before surgery for rectal prolapse. Br J Surg 86(2):263–266

    Article  PubMed  CAS  Google Scholar 

  17. Camilleri M, Bharucha AE, di Lorenzo C, Hasler WL, Prather CM, Rao SS, Wald A (2008) American neurogastroenterology and motility society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil 20(12):1269–1282

    Article  PubMed  CAS  Google Scholar 

  18. Cannon WB (1902) The movements of the intestines studied by means of the Rontgen rays. Am J Physiol 6:251–277

    Google Scholar 

  19. Chiarelli P, Brown W, McElduff P (2000) Constipation in Australian women: prevalence and associated factors. Int Urogynecol J 11(2):71–78

    Article  CAS  Google Scholar 

  20. Chiarioni G, Salandini L, Whitehead WE (2005) Biofeedback benefits only patients with outlet dysfunction, not patients with isolated slow transit constipation. Gastroenterology 129(1):86–97

    Article  PubMed  Google Scholar 

  21. Cook IJ, Brookes SJ, Dinning PG (2010) Sensory and motor function of the colon. In: Feldman M, Friedman LS, Brandt LJ (eds) Sleisenger and Fordtran’s gastrointestinal and liver disease, vol 2, 9th edn. Saunders, Philadelphia, pp 1660–1674

    Google Scholar 

  22. Cook IJ, Furukawa Y, Panagopoulos V, Collins PJ, Dent J (2000) Relationships between spatial patterns of colonic pressure and individual movements of content. Am J Physiol Gastrointest Liver Physiol 278:G329–G341

    PubMed  CAS  Google Scholar 

  23. Cook IJ, Talley NJ, Benninga MA, Rao SS, Scott SM (2009) Chronic constipation: overview and challenges. Neurgastroenterol Motil 21(s2):1–8

    Google Scholar 

  24. Davenport HW (2011) Gastrointestinal physiology, 1895–1975: motility. Compr Physiol 1–101

    Google Scholar 

  25. De Schryver AM, Samsom M, Smout AI (2003) Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci 48(7):1206–1212

    Article  PubMed  Google Scholar 

  26. Di Lorenzo C, Flores AF, Reddy SN, Hyman PE (1992) Use of colonic manometry to differentiate causes of intractable constipation in children. J Pediatr 120(5):690–695

    Article  PubMed  Google Scholar 

  27. Di Lorenzo C, Flores AF, Reddy SN, Snape WJ, Bazzochi G, Hyman PE (1993) Colonic manometry in children with chronic intestinal pseudo-obstruction. Gut 34(1):803–807

    Article  PubMed  Google Scholar 

  28. Dinning PG, Arkwright JW, Gregersen H, O’Grady G, Scott SM (2010) Technical advances in monitoring human motility patterns. Neurgastroenterol Motil 22(4):366–380

    Article  CAS  Google Scholar 

  29. Dinning PG, Bampton PA, Andre J, Kennedy ML, Lubowski DZ, King DW, Cook IJ (2004) Abnormal predefecatory colonic motor patterns define constipation in obstructed defecation. Gastroenterology 127:49–56

    Article  PubMed  Google Scholar 

  30. Dinning PG, Di Lorenzo C (2011) Colonic dysmotility in constipation. Best Prac Res Clin Gastrolenterol 25(1):89–101

    Article  Google Scholar 

  31. Dinning PG, Fuentealba SE, Kennedy ML, Lubowski DZ, Cook IJ (2007) Sacral nerve stimulation induces pan-colonic propagating pressure waves and increases defecation frequency in patients with slow-transit constipation. Colorectal Dis 9(2):123–132

    Article  PubMed  CAS  Google Scholar 

  32. Dinning PG, McKay E, Cook IJ (2006) Validation of a semi-automated scintigraphic technique for detecting episodic, real time, colonic flow. Neurogastroenterol Motil 18:547–555

    Article  PubMed  CAS  Google Scholar 

  33. Dinning PG, Scott SM (2011) Novel diagnostics and therapy of colonic motor disorders. Curr Opin Pharmacol 11:624–629

    Article  PubMed  CAS  Google Scholar 

  34. Dinning PG, Smith TK, Scott SM (2009) Pathophysiology of colonic causes of chronic constipation. Neurogastroenterol Motil 21(s2):20–30

    Google Scholar 

  35. Dinning PG, Southwell BR, Benninga MA, Scott SM (2010) Paediatric and adult colonic manometry: A tool to help unravel the pathophysiology of constipation. World J Gastroenterol 16(41):5162–5172

    Article  PubMed  Google Scholar 

  36. Dinning PG, Szczesniak MM, Cook IJ (2008) Determinants of postprandial flow across the human ileocecal junction: a combined manometric and scintigraphic study. Neurogastroenterol Motil 20:1017–1021

    Article  PubMed  CAS  Google Scholar 

  37. Dinning PG, Szczesniak MM, Cook IJ (2008) Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol Motil 20:512–520

    Article  PubMed  CAS  Google Scholar 

  38. Dinning PG, Szczesniak MM, Cook IJ (2008) Twenty-four hour spatiotemporal mapping of colonic propagating sequences provides pathophysiological insight into constipation. Neurogastroenterol Motil 20:1017–1021

    Article  PubMed  CAS  Google Scholar 

  39. Dinning PG, Szczesniak MM, Cook IJ (2009) Spatio-temporal analysis reveals aberrant linkage among sequential propagating pressure wave sequences in patients with symptomatically defined obstructed defecation. Neurgastroenterol Motil 21(9):945–e975

    Article  CAS  Google Scholar 

  40. Dinning PG, Zarate N, Hunt LM, Fuentealba SE, Mohammed SD, Szczesniak MM, Lubowski DZ, Preston SL, Fairclough PD, Lunniss PJ, Scott SM, Cook IJ (2010) Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurgastroenterol Motil 22:e340–e349

    Article  CAS  Google Scholar 

  41. Dinning PG, Hunt L, Arkwright JW, Patton V, Szczesniak MM, Wiklendt L, Davidson JB, Lubowski DZ, Cook IJ (2012) Pancolonic motor response to subsensory and suprasensory sacral nerve stimulation in patients with slow-transit constipation. Br J Surg 99:1002–1010

    Google Scholar 

  42. Ehrlein HJ, Reich H, Schwinger M (1983) Colonic motility and transit of digesta during hard and soft faeces formation in rabbits. J Physiol 338:75–86

    PubMed  CAS  Google Scholar 

  43. Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the united states Part I: overall and upper gastrointestinal diseases. Gastroenterology 136:376–386

    Article  PubMed  Google Scholar 

  44. American College of Gastroenterology Chronic Constipation Task Force (2005) An evidence-based approach to the management of chronic constipation in North America. Am J Gastroenterol 100(Suppl 1):S1–4

    Google Scholar 

  45. Grubel C, Hiscock R, Hebbard G (2008) Value of spatiotemporal representation of manometric data. Clin Gastroenterol Hepatol 6(5):525–530

    Article  PubMed  Google Scholar 

  46. Halls J (1965) Bowel content shift during normal defaecation [summary]. Proc R Soc Med 58:859–860

    PubMed  CAS  Google Scholar 

  47. Hardcastle JD, Mann CV (1968) Study of large bowel peristalsis. Gut 9:512–520

    Article  PubMed  CAS  Google Scholar 

  48. Hertz AF (1907) The passage of food along the human alimentary canal. Guy’s Hosp Rep 61:389–427

    Google Scholar 

  49. Hertz AF (1908) The pathology and treatment of chronic constipation. Proc R Soc Med 1(Med Sect):119–149

    Google Scholar 

  50. Hertz AF (1912) An Address on investigations of the motor functions of the alimentary canal by means of the x rays: delivered before the Brighton division of the British medical association on Nov. 22, 1911. Br Med J 1(2666):225–229

    Article  PubMed  CAS  Google Scholar 

  51. Hertz AF (1913) The ileo-caecal sphincter. J Physiol 47(1–2):54–56

    PubMed  CAS  Google Scholar 

  52. Hertz AF, Newton A (1913) The normal movements of the colon in man. J Physiol 47(1–2):57–65

    PubMed  CAS  Google Scholar 

  53. Herve S, Savoye G, Behbahani A, Leroi AM, Denis P, Ducrotte P (2004) Results of 24-h manometric recording of colonic motor activity with endoluminal instillation of bisacodyl in patients with severe chronic slow transit constipation. Neurogastroenterol Motil 16(4):397–402

    Article  PubMed  CAS  Google Scholar 

  54. Hiroz P, Schlageter V, Givel JC, Kucera P (2009) Colonic movements in healthy subjects as monitored by a magnet tracking system. Neurgastroenterol Motil 21(8):838–857

    Article  CAS  Google Scholar 

  55. Holdstock DJ, Misiewicz JJ, Smith T, Rowlands EN (1970) Propulsion (mass movements) in the human colon and its relationship to meals and somatic activity. Gut 11(2):91–99

    Article  PubMed  CAS  Google Scholar 

  56. Holzknechtg G (1909) Die normale Persistatlik des Kolon. Muench Med Wochenschr 47:2401–2403

    Google Scholar 

  57. Huizinga JD, Martz S, Gil V, Wang XY, Jimenez M, Parsons S (2011) Two independent networks of interstitial cells of cajal work cooperatively with the enteric nervous system to create colonic motor patterns. Front Neurosci 5:93

    Article  PubMed  Google Scholar 

  58. Hurst AF (1925) An address on the sphincters of the alimentary canal and their clinical significance: delivered before the Manchester medical society (October 8th, 1924). Br Med J 1(3343):145–151

    Article  PubMed  CAS  Google Scholar 

  59. Kamm MA, Hawley PR, Lennard-Jones JE (1988) Outcome of colectomy for severe idiopathic constipation. Gut 29:969–973

    Article  PubMed  CAS  Google Scholar 

  60. Kamm MA, van der Sijp JRM, Lennard-Jones JE (1992) Observations on the characteristics of stimulated defaecation in severe idiopathic constipation. Int J Colorect Dis 7:197–201

    Article  CAS  Google Scholar 

  61. King S, Catto-Smith AG, Stanton MP, Sutcliffe J, Simpson D, Cook IJ, Dinning PG, Hutson JM, Southwell BR (2008) 24-Hour colonic manometry in pediatric slow transit constipation shows significant reductions in antegrade propagation. Am J Gastroenterol 103(8):2083–2091

    Article  PubMed  Google Scholar 

  62. Knowles CH, Dinning PG, Pescatori M, Rintala R, Rosen H (2009) Surgical management of constipation. Neurgastroenterol Motil 21(s2):62–71

    Google Scholar 

  63. Knowles CH, Scott M, Lunniss PJ (1999) Outcome of colectomy for slow transit constipation. Ann Surg 230(5):627–638

    Article  PubMed  CAS  Google Scholar 

  64. Kruse FH (1933) Functional disorders of the colon: the spastic colon, the irritable colon, and mucous colitis. Cal West Med 39(2):97–103

    PubMed  CAS  Google Scholar 

  65. Kuijpers HC (1990) Application of the colorectal laboratory in diagnosis and treatment of functional constipation. Dis Colon Rectum 33(1):35–39

    Article  PubMed  CAS  Google Scholar 

  66. Legros C, Onimus ENJ (1869) Mouvements de l’intestin. J Anat Physiol (Paris) 6:37–65

    Google Scholar 

  67. Lentle RG, Janssen PW, Hume ID (2009) The roles of filtration and expression in the processing of digesta with high solid phase content. Comp Biochem Physiol A Mol Integr Physiol 154(1):1–9

    Article  PubMed  Google Scholar 

  68. Leroi AM, Lalaude O, Antonietti M, Touchais JY, Ducrotte P, Menard JF, Denis P (2000) Prolonged stationary colonic motility recording in seven patients with severe constipation secondary to antidepressants. Neurogastroenterol Motil 12(2):149–154

    Article  PubMed  CAS  Google Scholar 

  69. Liem O, Harman J, Benninga M, Kelleher K, Mousa H, Di C (2009) Lorenzo health utilization and cost impact of childhood constipation in the United States. J Pediatr 154(2):258–262

    Article  PubMed  Google Scholar 

  70. Lubowski DZ, Meagher AP, Smart RC, Butler SP (1995) Scintigraphic assessment of colonic function during defaecation. Int J Colorect Dis 10:91–93

    Article  CAS  Google Scholar 

  71. Lyford GL, He CL, Soffer E, Hull TL, Strong SA, Senagore AJ, Burgart LJ, Young-Fadok T, Szurszewski JH, Farrugia G (2002) Pan-colonic decrease in interstitial cells of Cajal in patients with slow transit constipation. Gut 51(4):496–501

    Article  PubMed  CAS  Google Scholar 

  72. Moreno-Osset E, Bazzocchi G, Lo S, Trombley E, Ristow E, Reddy SN, Villanueva-Meyer J, Fain J, Jing J, Mena I, Snape WJ (1989) Association between postprandial changes in colonic intraluminal pressure and transit. Gastroenterology 96:1265–1273

    PubMed  CAS  Google Scholar 

  73. Narducci F, Bassotti G, Gaburri M, Morelli A (1987) Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28:17–25

    Article  PubMed  CAS  Google Scholar 

  74. O’Brien M, Camilleri M, vonderOhe M, Phillips S, Pemberton J, Prather C, Wiste J, Hanson R (1996) Motility and tone of the left colon in constipation: a role in clinical practice? Am J Gastroenterol 91(12):2532–2538

    PubMed  Google Scholar 

  75. Omari T, Dejaeger E, Van Beckevoort D, Goeleven A, Davidson GP, Dent J, Tack J, Rommel N (2011) A method to objectively assess swallow function in adults with suspected aspiration. Gastroenterology 140(5):1454–1463

    Article  PubMed  Google Scholar 

  76. Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ (2008) Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls. Am J Gastroenterol 103(1):27–37

    Article  PubMed  Google Scholar 

  77. Patton V, Arkwright JW, Lubowski DZ, Dinning PG (2013) Sacral nerve stimulation alters distal colonic motility in patients with faecal incontinence. Br J Surg. doi:10.1002/bjs.9114. [Epub ahead of print]

  78. Rantis PC Jr, Vernava AM 3rd, Daniel GL, Longo WE (1997) Chronic constipation-is the work-up worth the cost? Dis Colon Rectum 40(3):280–286

    Article  PubMed  Google Scholar 

  79. Rao SS, Sadeghi P, Beaty J, Kavlock R (2004) Ambulatory 24-hour colonic manometry in slow-transit constipation. Am J Gastroenterol 99(12):2405–2416

    Article  PubMed  Google Scholar 

  80. Rao SSC, Seaton K, Miller M, Brown K, Nygaard I, Stumbo P, Zimmerman B, Schulze K (2007) Randomized controlled trial of biofeedback, sham feedback, and standard therapy for dyssynergic defecation. Clin Gastroenterol Hepatol 5(3):331–338

    Article  PubMed  Google Scholar 

  81. Ravi K, Bharucha AE, Camilleri M, Rhoten D, Bakken T, Zinsmeister AR (2010) Phenotypic variation of colonic motor functions in chronic constipation. Gastroenterology 138(1):89–97

    Article  PubMed  Google Scholar 

  82. Ritchie JA (1968) Colonic motor activity and bowel function. I. Normal movement of contents. Gut 9(4):442–456

    Article  PubMed  CAS  Google Scholar 

  83. Ritchie JA, Ardran GM, Truelove SC (1962) Motor activity of the sigmoid colon of humans. A combined study by intraluminal pressure recording and cineradiography. Gastroenterology 43:642–668

    PubMed  CAS  Google Scholar 

  84. Ritchie JA, Truelove SC, Ardan GM, Tuckey MS (1971) Propulsion and retropulsion of normal colonic contents. Am J Dig Dis 16(8):697–704

    Article  PubMed  CAS  Google Scholar 

  85. Sarna SK (2010) Colonic motility: from bench side to bedside. colloquium series on integrated systems physiology: from molecule to function to disease, 2011/04/01 edn. Morgan and Claypool Life Sciences, New York

    Google Scholar 

  86. Scharz G (1911) Zur Physiologie und Pathologie der menschlichen Dickdarmbewegungen. Muench Med Wochenschr 58:1489–1494

    Google Scholar 

  87. Singh S, Heady S, Valestin J, Rao SS (2011) Clinical utility of ambulatory colonic manometry in adults with slow transit constipation: can underlying pathophysiology guide therapy? Gastroenterology 140 5(Suppl 1):S-52

    Google Scholar 

  88. Smout AJPM (2006) Recent developments in gastrointestinal motility. Scand J Gastroenterol Suppl 41(5):25–31

    Article  Google Scholar 

  89. Torsoli A, Ramorino ML, Ammaturo MV, Capurso L, Paoluzi P, Anzini F (1971) Mass movements and intracolonic pressures. Am J Dig Dis 16(8):693–696

    Article  PubMed  CAS  Google Scholar 

  90. Underwood EA (1946) Wilhelm Conrad Rontgen (1845-1923) and the early development of radiology. Can Med Assoc J 54:61–67

    Google Scholar 

  91. van den Berg MM, Di Lorenzo C, Mousa HM, Benninga MA, Boeckxstaens GE, Luquette M (2009) Morphological changes of the enteric nervous system, interstitial cells of cajal, and smooth muscle in children with colonic motility disorders. J Pediatr Gastroenterol Nutr 48(1):22–29

    Article  PubMed  Google Scholar 

  92. von der Ohe MR, Hanson RB, Camilleri M (1994) Comparison of simultaneous recordings of human colonic contractions by manometry and a barostat. Neurogastroenterol Motil 6:213–222

    Article  Google Scholar 

  93. Wedel T, Spiegler J, Soellner S, Roblick UJ, Schiedeck TH, Bruch HP, Krammer HJ (2002) Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology 123(5):1459–1467

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil G. Dinning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dinning, P.G. (2013). Colonic Manometry: What Do the Squiggly Lines Really Tell Us?. In: Cheng, L., Pullan, A., Farrugia, G. (eds) New Advances in Gastrointestinal Motility Research. Lecture Notes in Computational Vision and Biomechanics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6561-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6561-0_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6560-3

  • Online ISBN: 978-94-007-6561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics