Skip to main content

Microbial Scale Habitability on Mars

  • Chapter
  • First Online:
Habitability of Other Planets and Satellites

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 28))

Abstract

Habitability can be defined on many scales. The early Earth was globally habitable because of its global ocean, but early Mars was not. Relatively dry conditions appear to have reigned on Mars throughout its history, but, from a microbial point of view, the necessary conditions for the appearance of life were still theoretically possible. The lack of connectivity between potential habitats in time and space may have resulted in life appearing and disappearing simultaneously in different geographical locations. The absence of habitable environments on geologically long timescales of 100s My together with the likelihood that lakes and seas were covered by ice are inhibiting factors for the evolution of photosynthesis. Martian life thus probably remained in a primitive chemotrophic form. Nevertheless, established life could have colonized newly formed habitats, even on an ephemeral basis, providing that viable cells could be transported into the habitats. For in situ missions and the search for Martian life, its heterogeneous distribution implies that the search for past traces of life will be challenging, but such environments do exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note in press: NASA has just announced that the landing site at Gale Crater was habitable since they have evidence for water, the bioessential elements C H N O P S, and the possibility of chemical energy.

4. References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

    Article  PubMed  CAS  Google Scholar 

  • Allen CC, Albert FG, Chafetz HS, Combie J, Graham CR, Kieft TL, Kivett SJ, McKay DS, Steele A, Taunton AE, Taylor MR, Thomas-Keprta KL, Westall F (2000) Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars. Icarus 147:49–67

    Article  PubMed  CAS  Google Scholar 

  • Allen CC, Oehler D (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112

    Article  PubMed  CAS  Google Scholar 

  • Allen CC, Probst LW, Flood BE, Longazo TG, Schelble RT, Westall F (2004) Meridiani Planum hematite deposit and the search for evidence of life on Mars – iron mineralization of microorganisms in rock varnish. Icarus 171:20–30

    Article  CAS  Google Scholar 

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci 106:9548–9555

    Article  PubMed  CAS  Google Scholar 

  • Amils R, Gonzalez-Toril E, Fernadez-Remolar D, Gomez F, Aguilera A, Rodriguez N, Garcia-Moyano A, Fairen AG, de la Fuente V, Sanz JL (2007) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet Space Sci 55:370–381

    Article  CAS  Google Scholar 

  • Andrews-Hanna JC, Lewis KW (2011) Early mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J Geophys Res 116:E02007

    Article  Google Scholar 

  • Andrews-Hanna JC, Soto A, Richardson MI (2012) The hydrologic and climatic context of the Gale Crater sedimentary mound. In: Abstracts of the 3rd conference on Early Mars, # 7038. LPI, Houston

    Google Scholar 

  • Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581

    Article  PubMed  CAS  Google Scholar 

  • Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, The OMEGA Team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–404

    Article  PubMed  CAS  Google Scholar 

  • Biemann K, Oro J, Toulmin P III, Orgel LE, Nier AO, Anderson DM, Simmonds PG, Flory D, Diaz AV, Rushneck DR, Biller JA (1976) Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars. Science 194:72–76

    Article  PubMed  CAS  Google Scholar 

  • Blank JG, Green SJ, Blake D, Valley JW, Kita NT, Treiman A, Dobson PF (2009) An alkaline spring system within the Del Puerto Ophiolite (California, USA): a Mars analogue site. Planet Space Sci 57:533–540

    Google Scholar 

  • Buffett BA (2003) The thermal state of Earth’s core. Science 299:1675–1676

    Article  PubMed  CAS  Google Scholar 

  • Burr DM, McEwan AS, Sakimoto SE (2002) Recent aqueous floods from the Cerberus Fossae, Mars. Geophys Res Lett 29. doi:10.1029/2001G1013345

  • Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars?), Ciba foundation symposium 202. Wiley, Chichester, pp 150–173

    Google Scholar 

  • Carr M (2006) The surface of Mars. Cambridge University Press, Cambridge

    Google Scholar 

  • Carr MH, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203

    Article  CAS  Google Scholar 

  • Carter J, Poulet F, Bibring J-P, Murchie S, Langevin Y, Mustard J, Gondet B (2009) Phyllosilicates and other hydrated minerals on Mars: 1. Global distribution as seen by MEX OMEGA [abstract 2028]. In: Abstracts of the 40th lunar and planetary science conference, Lunar and Planetary Institute, Houston

    Google Scholar 

  • Cavalazzi B, Westall F, Barbieri R, Foucher F, Cady S (2011) Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. Astrobiology 11:619–632

    Article  PubMed  CAS  Google Scholar 

  • Ciobanu M-C (2012) Biophère de subsurface de marges continentals: diversité, étendue et lien avec le paléoenvironment PhD thesis, University of Brest (Unpublished)

    Google Scholar 

  • Clark BC, Morris RV, McLennan SM, Gellert R, Jolliff B, Knoll AH, Squyres SW, Lowenstein TK, Ming DW, Tosca NJ, Yen A, Christensen PR, Gorevan S, Brückner J, Calvin W, Dreibus G, Farrand W, Klingelhoefer G, Waenke H, Zipfel J, Bell JF III, Grotzinger J, McSween HY, Rieder R (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240:73–94

    Article  CAS  Google Scholar 

  • Clifford SM (1993) A model for the hydrologic and climatic behavior of water on Mars. J Geophys Res 98:10,973–11,016

    Article  Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79

    Article  CAS  Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310

    Article  CAS  Google Scholar 

  • Cockell CS, Catling DC, Davis WL, Snook K, Kepner RL, Lee P, McKay CP (2000) The ultraviolet environment of Mars: biological implications past, present and future. Icarus 146:343–359

    Article  PubMed  CAS  Google Scholar 

  • Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteorit Planet Sci 37:1287–1298

    Article  CAS  Google Scholar 

  • Cockell CS, Balme M, Bridges JC, Davilad A, Schwenzer SP (2012) Uninhabited habitats on Mars. Icarus 217:184–193

    Article  CAS  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  PubMed  CAS  Google Scholar 

  • Craddock RA, Howard AD (2002) The case for rainfall on a warm, wet early Mars. J Geophys Res 107(E11). doi:10.1029/2001JE001505

  • Cull SC, Arvidson RE, Catalano JG, Ming DW, Morris RV, Mellon MT, Lemmon M (2010) Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys Res Lett 37:L22203

    Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  Google Scholar 

  • DasSarma P, DasSarma S (2008) On the origin of prokaryotic “species”: the taxonomy of halophilic Archaea. Saline Syst 4:5

    Article  PubMed  Google Scholar 

  • Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–381

    Article  PubMed  CAS  Google Scholar 

  • Derenne S, Robert F, Skryzpczak-Bonduelle A, Gourier D, Binet L, Rouzaud J-N (2008) Molecular evidence for life in the 3.5 billion-year old Warreawoona chert. Earth Planet Sci Lett 272:476–480

    Article  CAS  Google Scholar 

  • Ehlmann BL, Mustard J, Murchie SL, Poulet F, Bishop JL, Brown AJ, Calvin WM, Clark RN, Des Marais DJ, Milliken RE, Roach LH, Roush TL, Swayze GA, Wray JJ (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL, Bibring J-P, Meunier A, Fraeman AA, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60

    Article  PubMed  CAS  Google Scholar 

  • Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Forget F, Wordsworth R, Millour E, Madeleine J-B, Kerber L, Leconte J, Marcq E, Haberle RM (2013) Global modeling of the early Martian climate under a denser CO2 atmosphere: temperature and CO2 ice clouds. Icarus 222:1–19

    Article  Google Scholar 

  • Franck S, Blok A, von Bloh W, Bounama C, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the solar system. Planet Space Sci 48:1099–1105

    Article  CAS  Google Scholar 

  • Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res Off J Comm Space Res (COSPAR) 9:167–172

    Article  CAS  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton P, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age and implication for astrobiology. Astrobiology 7:275–311

    Article  PubMed  CAS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger J (2009) Beyond water on Mars. Nat Geosci 2:231–233

    Article  CAS  Google Scholar 

  • Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ, Barry R, Blake DF, Conrad P, Edgett KS, Ferdowski B, Gellert R, Gilbert JB, Golombek M, Gómez-Elvira J, Hassler DM, Jandura L, Litvak M, Mahaffy P, Justin M, Meyer M, Malin MC, Mitrofanov I, Simmonds JJ, Vaniman D, Welch RV, Wiens RC (2012) Mars science laboratory mission and science investigation. Space Sci Rev. doi:10.1007/s11214-012-9892-2

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JFA (2008) Revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Hoehler T, Westall F (2010) Mars exploration program analysis group goal one: determine if life ever arose on Mars. Astrobiology 10:859–867

    Article  PubMed  Google Scholar 

  • Horowitz N, Hobby GL, Hubbard JS (1976) The Viking carbon assimilation experiments: interim report. Science 194:1321–1322

    Article  PubMed  CAS  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Lovely D (2003) Extending the upper temperature limit for life. Science 301:934–936

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1997) Warming early Earth and Mars. Science 276:1213–1215

    Article  PubMed  CAS  Google Scholar 

  • Kasting J, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    Article  CAS  Google Scholar 

  • Klein HP, Levin GV (1976) The Viking biological investigation: preliminary results. Science 194:99–105

    Article  PubMed  CAS  Google Scholar 

  • Klingelhofer G et al (2004) Jarosite and hematite at Meridiani Planum from opportunity’s Mossbauer spectrometer. Science 306:1740–1745

    Article  PubMed  CAS  Google Scholar 

  • Kminek G, Bada J (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5

    Article  CAS  Google Scholar 

  • Knoll AJ, Grotzinger J (2006) Water on Mars and the prospect of Martian life. Elements 2:169–173

    Article  CAS  Google Scholar 

  • Lederberg J, Sagan C (1962) Microenvironments for life on Mars. Proc Natl Acad Sci 48:1473–1475

    Article  PubMed  CAS  Google Scholar 

  • Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58:592–598

    Article  Google Scholar 

  • Levin GV, Straat PA (1979) Completion of the Viking labeled release experiment on Mars. J Mol Evol 14:167–183

    Article  PubMed  CAS  Google Scholar 

  • Loizeau D, Mangold N, Poulet F, Bibring J-P, Gendrin A, Ansan V, Gomez C, Gondet B, Langevin Y, Masson P, Neukum G (2007) Phyllosilicates in the Mawrth Vallis region of Mars. J Geophys Res 112:1–20

    Article  Google Scholar 

  • Loizeau D, Mangold N, Poulet F, Ansan V, Hauber E, Bibring JP, Gondet B, Langevin Y, Masson P, Neukum G (2010) Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery, and DTM. Icarus 205:396–418

    Article  CAS  Google Scholar 

  • Mancinelli R (2005) Microbial life in brines, evaporates and saline sediments: the search for life on Mars. Adv Astrobiol Biogeophys 4:277–298

    Google Scholar 

  • Marion GM, Crowley JK, Thomson BJ, Hook SJ, Bridges NT, Brown AJ, Kargel JS, de Souza Filho CR (2008) Acidic Australian playa lakes as analogues for Mars. In: Lunar and planetary science XXXIX, # 1772

    Google Scholar 

  • Maurette M, Matrajit G, Gounelle M, Engrand C, Duprat J (2001) La matière extraterrestre primitive et les mystères de nos origines. In: Gargaud M, Despois D, Parisot JP (eds) L’Evironnement de la Terre Primitive. Presses Univ. Bordeaux, Bordeaux, pp 99–127

    Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250

    Article  PubMed  CAS  Google Scholar 

  • McLennan SM, Bell JF III, Calvin WM, Christensen PR, Clark BC, de Souza PA, Farmer J, Farrand WH, Fike DA, Gellert R, Ghosh A, Glotch TD, Grotzinger JP, Hahn B, Herkenhoff KE, Hurowitz JA, Johnson JR, Johnson SS, Jolliff B, Klingelhöfer G et al (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:95–121

    Article  CAS  Google Scholar 

  • Mormile MR, Hong B-Y, Benison KC (2009) Molecular analysis of the microbial communities of Mars analogue lakes in Western Australia. Astrobiology 10:919–930

    Google Scholar 

  • Morris RV, Ruff SW, Gellert R, Ming DW, Arvidson RE, Clark BC, Golden DC, Siebach K, Klingelhöfer G, Schröder C, Fleischer I, Yen AS, Squyres SW (2010) Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329:421–424

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Gonzalez R, Navarro KF, de la Rosa J, Iniguez E, Molina P, Miranda LD, Morales P, Cienfuegos E, Coll P, Raulin F, Amils R, McKayn C (2006) The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results. Proc Natl Acad Sci 103:16089–16094

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Gonzáles R, Vargas E, de la Rosa J, Raga AC, McKay CP (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty and evaporitic carbonatic). Earth Sci Rev 12:1–14

    Google Scholar 

  • Onstott TC, Lin L-H, Davidson M, Mislowack B, Borcsik M, Hall J, Slater G, Ward J, Sherwood Lollar B, Lippmann-Pipke J, Boice E, Pratt LM, Pfiffner SM, Moser DP, Gihring TM, Kieft T, Phelps TJ, van Heerden E, Litthaur D, DeFlaun M, Rothmel R, Wanger G, Southam G (2006) The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol J 23:369–414

    Article  CAS  Google Scholar 

  • Orgel LE (1998) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Google Scholar 

  • Pondrelli M, Rossi AP, Ori GG, van Gasselt S, Ceramicola S (2011) Mud volcanoes in the geological record of Mars: the case of Fisoff Crater. Earth Planet Sci Lett 304:511–519

    Article  CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Prieur D (2005) Microbiology of deep-sea hydrothermal vents: lessons for Mars exploration. Adv Astrobiol Biogeophys 4:299–324

    Google Scholar 

  • Rosing MT (1999) 13C depleted carbon microparticles in >3,700 Ma seafloor sedimentary rocks from West Greenland. Science 283:674–676

    Article  PubMed  CAS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland: indications of >3,700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 17:237–244

    Article  Google Scholar 

  • Rosing MT, Bird DK, Sleep H, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747

    Article  PubMed  CAS  Google Scholar 

  • Ruff SW, Farmer JD, Calvin WM, Herkenhoff KE, Johnson JR, Morris RV, Rice ME, Arvidson RE, Bell JF III, Christensen PR, Squyres SW (2011) Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. J Geophys Res 116:E00F23

    Article  Google Scholar 

  • Russell JM, Hall AJ, Martin W (2010) Serpentinization and its contribution to the energy for the emergence of life. Geobiology 8:355–371

    Article  PubMed  CAS  Google Scholar 

  • Schiaparelli G (1887) La vita sul pianeta marte, Estratto dal fascicolo N.° 11 Anno IV – 1895 della Rivista “Natura ed Arte”

    Google Scholar 

  • Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246

    Article  Google Scholar 

  • Schwenzer S, Abramov O, Allen CC, Bridges JC, Clifford SM, Filiberto J, Kring DA, Lasue J, McGovern PJ, Newsom HE, Treiman AH, Vaniman DT, Wiens RC, Wittmann A (2012) Gale Crater: formation and post-impact hydrous environments. Planet Space Sci 70:84–95

    Article  Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142

    Article  PubMed  CAS  Google Scholar 

  • Squyres SW, Kasting JF (1994) Early Mars: how warm and how wet? Science 265:744–749

    Article  PubMed  CAS  Google Scholar 

  • Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW, Crumpler L, Farmer J, des Marais DJ, Yen A, McLennan SM, Calvin W, III Bell JFB, Clark BC, Wang A, McCoy TJ, Schmidt ME, de Souza PA Jr (2008) Detection of silica-rich deposits on Mars. Science 320:1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42:187–200

    Article  PubMed  CAS  Google Scholar 

  • Summons RE, Amend JP, Bish D, Buick R, Cody GD, Des Marais DJ, Dromart G, Eigenbrode JL, Knoll AH, Sumner DY (2011) Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11:157–181

    Article  PubMed  Google Scholar 

  • Taylor-George S, Palmer F, Staley JT, Borns DJ, Curtiss B, Adams JB (1983) Fungi and bacteria involved in desert varnish formation. Microb Ecol 9:227–245

    Article  CAS  Google Scholar 

  • Tosca NJ, Knoll AJ, McLennan SM (2008) Water activity and the challenge for early life on Mars. Science 320:1204–1207

    Article  PubMed  CAS  Google Scholar 

  • Van den Boorn S, Van Bergen MJ, Nijman W, Vroon PZ (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35:939–942

    Article  Google Scholar 

  • Wassmann M, Moeller R, Rabbow E, Panitz C, Horneck G, Reitz G, Douki T, Cadet J, Stan-Lotter H, Cockell CS, Rettberg P (2012) Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to Low-Earth orbit and simulated Martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology 12:498–507

    Article  PubMed  Google Scholar 

  • Westall F (2005) Early life on Earth and analogies to Mars. In: Tokano T (ed) Water on Mars and life, advances in astrobiology and biogeophysics. Springer, Berlin, pp 45–64

    Google Scholar 

  • Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–330

    Article  CAS  Google Scholar 

  • Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Anne S (2006) The 3.466 Ga Kitty’s Gap Chert, an early Archaean microbial ecosystem. In: Reimold WU, Gibson R (eds) Processes on the early Earth, vol 405, Geological society of America special publication. Geological Society of America, Boulder, pp 105–131

    Chapter  Google Scholar 

  • Westall F, Foucher F, Cavalazzi B, de Vries ST, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud JN, Marchesini D, Anne S (2011a) Early life on Earth and Mars: a case study from 3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106

    Article  CAS  Google Scholar 

  • Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud JN, Simionovici A, Salomé M, Mostefaoui S, Andreazza C, Foucher F, Toporski J, Jauss A, Thiel V, Southam G, MacLean L, Wirick S, Hofmann A, Meibom A, Robert F, Défarge C (2011b) Implications of in situ calcification for photosynthesis in a 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479

    Article  CAS  Google Scholar 

  • Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J, Kminek G (2013a) Habitability on rocky planets and satellites (for example, Mars), from a microbial point of view. Astrobiology (Submitted)

    Google Scholar 

  • Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago J, Kminek G (2013b) Scenarios for the search for life on a habitable Mars. Icarus (Submitted)

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Westall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westall, F. (2013). Microbial Scale Habitability on Mars. In: de Vera, JP., Seckbach, J. (eds) Habitability of Other Planets and Satellites. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6546-7_11

Download citation

Publish with us

Policies and ethics