Skip to main content

Forest Influences on Climate and Water Resources at the Landscape to Regional Scale

  • Chapter
  • First Online:
Landscape Ecology for Sustainable Environment and Culture

Abstract

Although it is well known that climate controls the distribution, productivity and functioning of vegetation on earth, our knowledge about the role of forests in regulating regional climate and water resources is lacking. The studies on climate-forests feedbacks have received increasing attention from the climate change and ecohydrology research communities. The goal of this study is to provide an in-depth examination of forest-climate-water interactions by synthesizing recent scientific literature on the influences of forests on climate and water resources from watershed to regional scale. The synthesis paper provides a review of the state of art of our understanding of the mechanisms of interactions of forests and climate and water resources at the landscape and regional scale. The paper presents two case studies that examine the influences of forests on microclimate, watershed hydrology, and regional climate and water resources at a small watershed to region scale using literature from the Coweeta Hydrological Laboratory in the southeast U.S. and a simulation study on the North China Shelter Belt Project. Future research gaps were identified in terms of integrated Earth System modeling to guide forest management for global change mitigation and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alila Y, Kuras PK, Schnorbus M, Hudson R. Forests and floods: a new paradigm sheds light on age-old controversies. Water Resour Res. 2009;45:W08416. doi:10.1029/2008WR007207.

    Article  Google Scholar 

  • Adams MB, Loughry LH, Plaugher LL. Experimental forests and ranges of the USDA forest service, revised. US For Serv Gen Tech Rep NE-GTR-321; 2008. p. 183.

    Google Scholar 

  • Andreassian V. Waters and forests: from historical controversy to scientific debate. J Hydrol. 2004;291:1–27.

    Article  Google Scholar 

  • Angelini IM, Garstang M, Davis RE, Hayden B, Fitzjarrald DR, Legates DR, Greco S, Macko S, Connors V. On the coupling between vegetation and the atmosphere. Theor Appl Climatol. 2011. doi:10.1007/s00704-010-0377-5.

    Google Scholar 

  • Avila FB, Pitman AJ, Donat MG, Alexander LV, Abramowitz G. Climate model simulated changes in temperature extremes due to land cover change. J Geophys Res. 2012;117:D04108. doi:10.1029/2011JD016382.

    Article  Google Scholar 

  • Bachelet D, Lenihan JM, Daly C, Neilson RP, Ojima DS, Parton WJ. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water. Technical documentation, version 1.0. Gen Tech Rep PNW-GTR-508. Portland: US Department of Agriculture, Forest Service, Pacific Northwest Research Station; 2001.

    Google Scholar 

  • Betts RA. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature. 2000;408:187–90.

    Article  CAS  PubMed  Google Scholar 

  • Black P. Watershed hydrology. 2nd ed. CRC Press: Boca Raton; 1996. p. 449.

    Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis KJ, Evans R, Fuentes J, Goldstein A, Katul G, Law BE, Lee Z, Malhi Y, Meyers T, Munger JW, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson KB, Wofsy S. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc. 2001;82(11):2415–34.

    Article  Google Scholar 

  • Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444–9.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Peh KS-H, Brook BW. Global evidence that deforestation amplifies flood risk and severity in the developing world. Global Change Biol. 2007;13:2379–95. doi:10.1111/j.1365-2486.2007.01446.x.

    Article  Google Scholar 

  • Bosch JM, Hewlett JD. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol. 1982;55:3–23.

    Article  Google Scholar 

  • Brown AE, Zhang L, McMahon TA. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol. 2005;310:1–34.

    Google Scholar 

  • Brown TC, Hobbins MT, Ramirez JA. Spatial distribution of water supply in the coterminous United States. J Am Water Resour Assoc. 2008;6(44):1474–87.

    Article  Google Scholar 

  • Bruijnzeel LA. Hydrological functions of tropical forests: not seeing the soils for the trees. Agric Ecosyst Environ. 2004;104:185–228.

    Article  Google Scholar 

  • Charney JG. Dynamics of deserts and drought in the Sahel. Quart J Roy Meteor Soc. 1975;101:193–202.

    Article  Google Scholar 

  • Calder IR, Smyle J, Aylward B. Debate over flood-proofing effects of planting forests. Nature. 2007;450:945. doi:10.1038/450945b.

    Article  CAS  PubMed  Google Scholar 

  • Cao S. Why large-scale afforestation efforts in China have failed to solve the desertification problem. Environ Sci Technol. 2008;42:1826–31.

    Article  CAS  PubMed  Google Scholar 

  • Chang M. Forest hydrology: an introduction to water and forests. BocaRaton: CRC Press; 2002. p. 373.

    Google Scholar 

  • Chapin III FS, Matso PA, Vitousek PM, Chapin MC. Principles of terrestrial ecosystem ecology. 2nd ed. New York: Springer; 2012. p. 544.

    Google Scholar 

  • Charney JG, Quirk WJ, Chow SH, Kornfield J. A comparative study of the effects of albedo change on drought in semi-arid regions. J Atmos Sci. 1977;34:1366–85.

    Article  Google Scholar 

  • Cook BI, Anchukaitis KJ, Kaplan JO, Puma MJ, Kelley M, Gueyffier D. Pre-Columbian deforestation as an amplifier of drought in Mesoamerica. Geophys Res Lett. 2012;39:L16706. doi:10.1029/2012GL052565.

    Article  Google Scholar 

  • Delworth T, Manabe S. The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate. 1988;1:523–47.

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A. Modeling tropical deforestation: a study of GCM land–surface parameterizations. Quart J Roy Meteor Soc. 1988;114:439–62.

    Article  Google Scholar 

  • Dickinson RE, Kennedy P. Impacts on regional climate of Amazon deforestation. Geophy Res Lett. 1992;19(19):1947–50.

    Article  Google Scholar 

  • Dickinson RE, Durbudge TB, Kennedy PJ, McGuffie K, Pitman AJ 1993 Tropical deforestation: modeling local- to regional-scale climate change. J Geophy Res. 1993;98(D4):7289–315.

    Google Scholar 

  • Diggs JA. 2004. Simulation of nitrogen and hydrology loading of forested fields in eastern North Carolina using DRAINMOD-N 11. M.S. Thesis, North Carolina State University, Raleigh, NC; 2004. p. 155.

    Google Scholar 

  • Eisenbies MH, Aust WM, Burger JA, Adams MB. Forest operations, extreme events, and considerations for hydrologic modeling in the Appalachians—A review. For Ecol Manage. 2007;242:77–98. doi:10.1016/j.foreco.2007.01.051.

    Article  Google Scholar 

  • Ellison D, Futter MN, Bishop K. On the forest cover–water yield debate: from demand- to supply-side thinking. Global Change Biol. 2012;18:806–820. doi:10.1111/j.1365-2486.2011.02589.x.

    Google Scholar 

  • Eltahir EAB, Bras RL. On the response of the tropical atmosphere to large-scale deforestation. Quart J Roy Meteor Soc. 1993;119:779–93.

    Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR. Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour. 2007;32:1–29.

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. Global consequences of land use. Science. 2005;309:570–4.

    Article  CAS  PubMed  Google Scholar 

  • Ford CR, Hubbard RM, Kloeppel BD, Vose JM. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agric For Meteorol. 2007;145:176–85. doi:10.1016/j.agrformet.2007.04.010.

    Article  Google Scholar 

  • Ford CR, Laseter SH, Swank WT, Vose JM. Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol Appl. 2011;21:2049–67.

    Article  PubMed  Google Scholar 

  • Fernow BE. Forests influences (1972 reprint version). No. 7 Bulletin of U.S. Forest service; 1893.

    Google Scholar 

  • Friend A, Stevens A, Knox R, Cannell M. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Model. 1997;95:249–87.

    Google Scholar 

  • Garcia-Carreras L, Parker DJ. How does local tropical deforestation affect rainfall? Geophys Res Lett. 2011;38:L19802. doi:10.1029/2011GL049099.

    Article  Google Scholar 

  • Grace MJ III, Skaggs RW, Cassel DK. Soil physical changes associated with forest harvesting operations on an organic soil. Soil Sci Soc Am J. 2006;70:503–9.

    Article  CAS  Google Scholar 

  • Giorgi F, Marinucci MR, De Canio G, Bates GT. Development of a second generation regional climate model (RegCM2), I, boundary layer and radiative transfer processes. Mon Weather Rev. 1993a;121:2794–813.

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, De Canio G, Bates GT. Development of a second generation regional climate model (RegCM2), II, Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev. 1993b;121:2814–32.

    Article  Google Scholar 

  • Hajabbasi MA, Jalalian A, Karimzadeh HR. Deforestation effects on soil physical and chemical properties, Lordegan, Iran. Plant Soil. 1997;1997(190):301–8. doi:10.1023/A:1004243702208.

    Article  Google Scholar 

  • Ice GG, Stednick JD. A century of forest and wildland watershed lessons. Soc Am Foresters. 2004;287.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007.

    Google Scholar 

  • Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW. Water in a changing world. Ecol Appl. 2001;11:1027–45. doi:10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2.

    Article  Google Scholar 

  • Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, Le Maitre DC, McCarl BA, Murray BC. Trading water for carbon with biological carbon sequestration. Science. 2005;310:1944–7. doi:10.1126/science.1119282.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Jobbágy EG, Nosetto MD. Ecohydrology in a human-dominated landscape. Ecohydrology. 2009;2:383–9. doi:10.1002/eco.81.

    Article  Google Scholar 

  • Jones JA, Creed IF, Hatcher KL, Warren RJ, Adams MB, Benson MH, Boose E, Brown WA, Campbell JL, Covich A, Clow DW, Dahm CN, Elder K, Ford CR, Grimm NB, Henshaw DL, Larson KL, Miles ES, Miles KM, Sebestyen SD, Spargo AT, Stone AB, Vose JM, Williams MW. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. BioScience. 2012;62(4):390–404. doi:10.1525/bio.2012.62.4.10.

  • Jin J, Miller NL, Schlegel N. Sensitivity Study of Four Land Surface Schemes in the WRF Model. Adv Meteorol. 2010 doi: 10.1155/2010/167436.

  • Jung M, Reichstein M, Ciais P, Seneviratne SI et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature. 2010;467:951–54.

    Google Scholar 

  • Kittredge J. Forest influences. New York: McGraw-Hill Book Co.; 1948. p. 99–114.

    Google Scholar 

  • Komatsu H, Tanak N, Kume T. Do coniferous forests evaporate more water than broad-leaved forests in Japan? J Hydrol. 2007;336:361–75.

    Google Scholar 

  • Koster RD, Suarez MJ. The relative contributions of land and ocean processes to precipitation variability. J Geophys Res. 1995;100(D7):13775–790.

    Google Scholar 

  • Laurence WF. Environmental science: forests and floods. Nature. 2007;449:409–10.

    Article  Google Scholar 

  • Levis S, Bonan GB, Vertenstein M, Oleson KW. The Community Land Model's dynamic global vegetation model (CLM-DGVM): Technical description and user's guide. NCAR Tech. Note TN-459+IA, 2004;50 pp.

    Google Scholar 

  • Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol. 2002;113:97–120. doi:10.1016/S0168-1923(02)00104-1.

    Article  Google Scholar 

  • Lean J, Warrilow DA. Simulation of the regional climatic impact of Amazon deforestation. Nature. 1989;342:411–13.

    Google Scholar 

  • Lee R. Forest hydrology. New York: Columbia University Press; 1981. pp. 498–509.

    Google Scholar 

  • Lee X, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu L, Katul G, Kolb T, Law B, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw U KT, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L. Observed increase in local cooling effect of deforestation at higher latitudes. Nature. 2011;479:384–87.

    Google Scholar 

  • Lin Y, Wei X. The impact of large-scale forest harvesting on hydrology in the Willow Watershed of Central British Columbia. J Hydrol. 2008;359:141–9.

    Article  Google Scholar 

  • Liu S, Lu L, Mao D, Jia L. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol Earth Syst Sci. 2007;11:769–83.

    Article  Google Scholar 

  • Liu Y-Q, Avissar R. A study of persistence in the land–atmosphere system with a fourth–order analytical model. J. Climate. 1999;12:2154–68.

    Article  Google Scholar 

  • Liu Y-Q, Stanturf J, Lu H. Modeling the potential of the NorthernChina forest shelterbelt in improving hydroclimate conditions. J Am Water Resour Assoc. 2008;44(5):1176–92.

    Article  Google Scholar 

  • Liu Y-Q. A numerical study on hydrological impacts of forestrestoration in the southern United States. Ecohydrology. 2010;4:299–314.

    Article  Google Scholar 

  • Liu JG, Li SX, Ouyang ZY, Tam C, Chen XD. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad 894 Sci USA. 2008b;105(28):9477–482.

    Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L. Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex. 2009;6:302–7.

    Article  Google Scholar 

  • Marsh GP. Man and nature; or, physical geography as modified by human action. New York: C. Scribner; 1864.

    Google Scholar 

  • Meginnis HG. Increasing water yields by cutting forest vegetation. In: Symposium of Hannoversch-Munden. Publ. 48. Louvain, Belgium: International Association of Scientific Hydrology: 1959;59–68.

    Google Scholar 

  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, Mescherskaya AV, Kruger AC,Rehman S, Dinpashoh Y. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol. 2012;416–7:182–205.

    Google Scholar 

  • Munns EN. Forest hydrology in the Appalachians. J Soil Water Conserv. 1947;2:71–6.

    Google Scholar 

  • Neilson RP, Prentice IC, Smith B, Kittel TGF, Viner D. Simulated changes in vegetation distribution under global warming. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ, editors. The regional impacts of climate change: an assessment of vulnerability. Cambridge: Cambridge University Press; 1998. p. 439–56.

    Google Scholar 

  • Neilson RP, Pitelka LF, Solomon A, Nathan R, Midgley GF, Fragoso J, Lischke H, Thompson K. Forecasting regional to global plant migration in response to climate change: challenges and directions. Bioscience. 2005;55:749–59.

    Article  Google Scholar 

  • Nobre CA, Sellers PJ, Shukla J. Amazonian deforestation and regional climate change. J Clim. 1991;4:957–88.

    Google Scholar 

  • Notaro M, Vavrus S, Liu Z. Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Clim. 2007;20:70–90.

    Article  Google Scholar 

  • Notaro M, Liu Z. Observed vegetation–climate feedbacks in the United States. J Clim. 2006;19:763–86.

    Article  Google Scholar 

  • Notaro M, Liu Z. Statistical and dynamical assessment of vegetation feedbacks on climate over the boreal forests. Clim Dyn. 2008;31:691–712.

    Article  Google Scholar 

  • Oyebande L. Effects of tropical forests on water yield. In: Reynolds ERC, Reynolds FB, editors. Forest, climate, and hydrology: regional impacts. Japan: The United Nations University; 1988. p. 16–50.

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis S, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–93.

    Google Scholar 

  • Parrotta J. Understanding Relationships between biodiversity, Carbon, forests and people: The key to achieving REDD+Objectives. A global assessment report. IUFRO on behalf of the Collaborative Partnership on Forests (CPF), Global Forest Expert Panel on Biodiversity, Forest Management and REDD+; 2012.

    Google Scholar 

  • Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF. The CSIRO Mk3L climate system modelversion 1.0—Part 1: description and evaluation. Geosci Model Dev Discuss. 2011;4(1):219–287. doi:10.5194/gmdd-4-219-2011.

  • Pielke RA, Avissar R. Influence of landscape structure on local andregional climate. Landscape Ecol. 1990;4:133–55.

    Article  Google Scholar 

  • Pielke RA, Adegoke J, Beltr A, An-Przekurat CA, Hiemstra J, Lin J, Nair US, Niyogi D, Nobis TE. An overview of regional land-use and land-cover impacts on rainfall. Tellus. 2007;59B:587–601.

    Google Scholar 

  • Pielke RA Sr, et al. Land use/land cover changes and climate: modeling analysis and observational evidence, Wiley Interdiscip. Rev Clim Change. 2011;2:828–50. doi:10.1002/wcc.144.

    Google Scholar 

  • Rao L, Sun G, Ford CR, Vose J. Modeling potential evapotranspiration of two forested watersheds in the Southern Appalachians, USA. Trans ASABE. 2011;54(6):2067–78.

    Article  Google Scholar 

  • Ryan MG, Harmon ME, Birdsey RA, Giardina CP, Heath LS, Houghton RB, Jackson RB, McKinley DC, Morrison J, Murray BC, Pataki DE, Skog KE. A synthesis of the science on forests and carbon for U.S. Forests. Issue 13 of Issues in Ecology; 2010.

    Google Scholar 

  • Robinson M, Cognard-Plancq AL, Cosandey C et al. Studies of the impact of forests on peak flows and baseflows: a European perspective. For Ecol Manage. 2003;186:85–97.

    Google Scholar 

  • Sampson RN. Southern forests: Yesterday, Today, and Tomorrow, In: Michael Rauscher H, Johnsen K, editors. Southern forest science: Past, Present, and Future. Department of Agriculture Forest Service, General Technical Report SRS-75; 2004. p. 408.

    Google Scholar 

  • Scott DF, Lesch W. Streamflow responses to afforestation with Eucalyptus grandis and pinuspetula and to felling in the Mokobulaan experimental catchments, South African. J Hydrol. 1997;199:360–77.

    Article  Google Scholar 

  • Scott DF, Bruijnzeel LA, Mackensen J. The hydrologic and soil impacts of reforestation. In: Bonell M, Bruijnzeel LA, editors. Forests, water and people in the humid tropics. Cambridge University Press; 2005. pp. 622–51.

    Google Scholar 

  • SFA (China State Forest Administration). China’s Forest Shelter Project Dubbed ‘‘Green Great Wall.’’ 2006. http://www.chinaview.cn, accessed on July 9, 2006.

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol. 2003;9:161–85.

    Article  Google Scholar 

  • Shukla J, Mintz Y. Influence of land–surface evapotranspiration on the earth’s climate. Science. 1982;215:1498–501.

    Article  CAS  PubMed  Google Scholar 

  • Shukla J, Nobre CA, Sellers PJ. Amazonia deforestation andclimate change. Science. 1990;247:1322–5.

    Article  CAS  PubMed  Google Scholar 

  • Sud YC, Shukla J, Mintz Y. Influence of land–surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model. J Appl Meteor. 1988;27:1036–54.

    Article  Google Scholar 

  • Sun G, McNulty SG, Shepard JP, Amatya DM, Riekerk H, Comerford NB, Skaggs RW, Swift L Jr. Effects of timber management on wetland hydrology in the southern United States. For Ecol Manage. 2001;143:227–36.

    Article  Google Scholar 

  • Sun G, Zhou G, Zhang Z, Wei X, McNulty SG, Vose JM. Potential water yield reduction due to reforestation across China. J Hydrol. 2006;328:548–58.

    Article  Google Scholar 

  • Sun G, Zuo C, Liu S, Liu M, McNulty SG, Vose JM. Watershed evapotranspiration increased due to changes in vegetation composition and structure under a subtropical climate. J Am Water Resour Assoc. 2008;44(5):1164–75.

    Article  Google Scholar 

  • Sun G, Noormets A, Gavazzi1 MJ, McNulty SG, Chen J, Domec J-C, King JS, Amatya DM, Skaggs RW. Energy and water Balance of two contrasting Loblolly pine plantations on the lower coastal plain of North Carolina, USA. For Ecol Manage. 2010;259:1299–310.

    Google Scholar 

  • Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G, Liu C, Lu N, McNulty SG, Miao H, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang Z. A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology. 2011a;4:245–55. doi:10.1002/eco.194.

    Article  Google Scholar 

  • Sun G, Caldwell P, Noormets A, Cohen E, McNulty SG, Treasure E, Domec JC, Mu Q, Xiao J, John R, Chen J. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. J Geophys Res. 2011b;116:G00J05. doi:10.1029/2010JG001573.

  • Swank WT, Douglass JE. Streamflow greatly reduced by converting hardwoods to pine. Science. 1974;185:857–9.

    Article  CAS  PubMed  Google Scholar 

  • Swank WT, Swift LW, Douglass JE. Streamflow changes associated with forest cutting, species conversion, and natural disturbances. In: Swank WT, Crossley DA, editors. Forest hydrology and ecology at Coweeta. Ecological studies, vol. 66. New York: Springer; 1988. p. 297–312.

    Google Scholar 

  • Swank WT, Vose JM. Long-term hydrologic and stream chemistry responses of southern Appalachian catchments following conversion from mixed hardwoods to white pine. In: Landolt R, editor. HydrologiekleinerEinzugsgebiete: Gedenkschrift Hans M. Keller. BietragezurHydrologie der Schweiz 35. Bern, Schweizerische: SchweizerischeGesellshacft fur Hydrologie und Limnologie; 1994. p. 164–72.

    Google Scholar 

  • Swank WT, Vose JM, Elliot KJ. Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a Southern Appalachian catchment. For Ecol Manage. 2001;143:163–78.

    Article  Google Scholar 

  • Swift LW. Effect of forest cover and mountain physiography on the radiant energy balance, D.F. Thesis. Durham: Duke University; 1972.

    Google Scholar 

  • Swift LW Jr, Messer JB. Forest cuttings raise temperatures of small streams in the Southern Appalachians. J Soil Water Conserv. 1971;26(3):111–6.

    Google Scholar 

  • Swift LW Jr. Lower water temperatures within a streamside buffer strip. Research Note SE–193. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station; 1973. p. 7.

    Google Scholar 

  • Swift LW Jr. Duration of stream temperature increases following forest cutting in the southern Appalachian mountains. In: International symposium on hydrometeorology. American Water Resources Association; 1982.

    Google Scholar 

  • Swift LW, Swank WT, Mankin JB, Luxmoore RJ, Goldstein RA. Simulation of evapotranspiration and drainage from mature and clear-cut deciduous forests and young pine plantation. Water Resour Res. 1975;11:667–73.

    Article  Google Scholar 

  • Swift LW Jr, Swank WT. Long term responses of streamflow following clearcutting and regrowth. Hydrol Sci Bull. 1981;26(3):245–56.

    Google Scholar 

  • Swank WT, Helvey JD. Reduction of streamflow increases following regrowth of clearcut hardwood forest. In: Proceedings of the symposium on the results of research on representative and experimental basins, December 1970, Wellington, New Zealand. Publication 96. United Nations Educational, Scientific and Cultural Organization—International Association of Scientific Hydrology, Leuven, Belgium; 1970. p. 346–60.

    Google Scholar 

  • Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A. Ecosystem net primary productivity, evapotranspiration, and water use efficiency in the southern United States during 1895–2007. For Ecol Manage. 2009;259:1311–27.

    Article  Google Scholar 

  • United States Department of Agriculture Forest Service (USFS). Watershed management research Coweeta experiment forest, Macro County, North Carolina, Southeastern Forest Experiment Station, Asheville, NC; 1948.

    Google Scholar 

  • van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC. Origin and fate of atmospheric moisture over continents. Water Resour Res. 2010;46:1–12.

    Google Scholar 

  • van der Ent RJ, Coenders-gerrits AMJ, Nikoli R, Savenije HG. The importance of proper hydrology in the forest cover-water yield debate: commentary on Ellison et al. (2012). Glob Change Biol. 2012;18:806–20.

    Article  Google Scholar 

  • Van Dijk AIJM, Van Noordwijk M, Calder IR, BruijnzeeL SLA, Schellekens J, Chappell NA. Forest–flood relation still tenuous—comment on ‘Global evidence that deforestation amplifies flood risk and severity in the developing world’ by CBradshaw CJA, Sodi NS, Peh KS-H, Brook BW. Glob Change Biol. 2009;15:110–5. doi:10.1111/j.1365-2486.2008.01708.

    Article  Google Scholar 

  • Vautard R, Cattiaux J, Yiou P, Thépaut J-N, Ciais P. Northern Hemisphere 1124 atmospheric stilling partly attributed to increased surface roughness. Nat Geosci. 2010;1125(3):756–61.

    Article  Google Scholar 

  • Vinnikov K, Robock A, Speranskaya NA, Schlosser CA. Scales of temporal and spatial variability of midlatitude soil moisture. J Geophys Res.1996;101(D3):7163–74.

    Google Scholar 

  • Vose J, Sun G, Ford CR, Bredemeier M, Ostsuki K, Wei X, Zhang Z, Zhang L. Forest ecohydrological research in the 21st century: what are the critical needs? Ecohydrology. 2011;4(2):146–58.

    Article  Google Scholar 

  • Vose JM, Ford CR, Laseter S, Dymond S, Sun G, Adams MB, Sebestyen S, Campbell J, Luce C, Amatya D, Elder K, Heartsill-Scalley T. Can forest watershed management mitigate climate change impacts on water resources? Book chapter In: IAHS Revisiting experimental catchment studies in forest hydrology (proceedings of a workshop held during the 25 IUGG general assembly in Melbourne, June–July 2011), IAHS Publ.;2012. p. 353.

    Google Scholar 

  • Wang JF, Chagnon FJF, Williams ER, Betts AK, Renno NO, Machado LAT, Bisht G, Knox R, Brase RL. Impact of deforestation in the Amazon basin on cloud climatology. Proc Natl Acad Sci USA. 2009;106(10):3670–4.

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Kowalczyk E, Leuning R, Abramowitz G, Raupach MR, Pak B, van Gorsel E, Luhar A. Diagnosing errors in a landsurface model (CABLE) in the time and frequency domains. J Geophys Res. 2011;116:G01034. doi:10.1029/2010JG001385.

    Google Scholar 

  • Waring SW, Waring RH. Forest ecosystems: analysis at multiple scales. 3rd ed. Academic Press; 2007. p. 440.

    Google Scholar 

  • Watson T. Climate plan calls for forest expansion, USA TODAY. www.usatoday.com/news/nation/environment/2009-08-19-forest_N.htm (2009).

  • Wei X, Sun G, Liu S, Hong J, Zhou G, Dai L. The forest-streamflow relationship in China: a 40-year retrospect. J Am Water Resour Assoc. 2008;44(5):1076–85.

    Article  Google Scholar 

  • Wei X, Zhang M. Quantifying+stream flow change caused by forest disturbance at a large spatial scale: a single watershed study. Water Resour Res. 2010;46:W12525. doi:10.1029/2010WR009250.

    Article  Google Scholar 

  • Whitehead PG, Robinson M. Experimental basin studies—an international and historical perspective of forest impacts. J Hydrol. 1993;145:217–30.

    Article  Google Scholar 

  • Xue Y, Shukla J. The influence of land surface properties on Sahel climate, part I: desertification. J Clim. 1993;6:2232–45.

    Article  Google Scholar 

  • Yeh TC, Wetherald RT, Manabe S. The effect of soil moisture on the short-term climate and hydrology change—a numerical experiment. Mon Weather Rev. 1984;112:474–90.

    Article  Google Scholar 

  • Zeng X, Dickinson RE, Walker A, Shaikh M, DeFries RS, Qi J. Derivation and evaluation of global 1 km fractional vegetation cover data for land modeling. J Appl Meteor. 2000;39:826–39.

    Article  Google Scholar 

  • Zhang L, Dawes WR, Walker GR. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res. 2001;37:701–8.

    Article  Google Scholar 

  • Zhang XP, Zhang L, McVicar TR, Van Niel TG, Li LT, Li R, Yang QK, Liang W. Modeling the impact of afforestation on mean annual streamflow in the Loess Plateau, China. Hydrol Process. 2008a;22:1996–2004.

    Article  Google Scholar 

  • Zhang X. P., L. Zhang, J. Zhao, P. Rustomjiand P. Hairsine. 2008b. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res. 2008b;44:W00A07. doi:10.1029/2007WR006711.

  • Zhou, Wei GX, et al. Forest recovery and river discharge at the regional scale of Guangdong province, China. Water Resour Res. 2010;46:w09503. doi:10.1029/2009WR008829.

  • Zon R. Forests and water in the light of scientific investigation, USDA forest service, Washington, DC. Senate document 469, 62nd congress, 2nd session; 1927.

    Google Scholar 

Download references

Acknowledgments

Funding for this study was supported by the USDA Forest Service Southern Research Station and also by the Chinese Academy of Science CAS/SAFEA International Partnership Program for Creative Research Teams of ‘Ecosystem Processes and Services’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, G., Liu, Y. (2013). Forest Influences on Climate and Water Resources at the Landscape to Regional Scale. In: Fu, B., Jones, K. (eds) Landscape Ecology for Sustainable Environment and Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6530-6_15

Download citation

Publish with us

Policies and ethics