Skip to main content

Remote Sensing and Geospatial Analysis for Landscape Pattern Characterization

  • Chapter
  • First Online:
Landscape Ecology for Sustainable Environment and Culture

Abstract

Landscape pattern characterization aims to map, quantify, and interpret landscape spatial patterns, and is therefore a fundamental pursuit in landscape ecology. The advances in remote sensing and geographic information systems (GIS) have greatly contributed to the development of quantitative methods for landscape pattern characterization. This chapter will review the utilities of remote sensing and GIS for the measurement, analysis, and interpretation of landscape spatial patterns. While remote sensing allows a direct observation of landscape patterns and processes at various scales, GIS provides a technical platform for data integration and synthesis in support of landscape pattern analysis and modeling. The chapter will begin with an overview on the research status identifying some gaps when landscape ecologists utilize remote sensing and GIS techniques in their research. Then, it will examine the utilities of remote sensing and landscape metrics for landscape pattern mapping and quantification, which will be followed by a discussion on GIS-based spatial analysis and modeling techniques for examining patterns, relationships, and emerging trends and for simulation and prediction. While the topics covered in this chapter span the entire spectrum in landscape pattern characterization, our emphasis is not on a comprehensive review but on some methodological issues highlighting caveats and cautions when using remote sensing and geospatial techniques. We believe the issues identified here can help landscape ecologists to better utilize remote sensing and GIS techniques in their specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal C, Green GM, Grove JM, Evans TP, Schweik CM. A review and assessment of land-use change models: dynamics of space, time, and human choice. Gen Tech Rep. NE-297. U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 2002. p. 61. http://nrs.fs.fed.us/pubs/gtr/gtr_ne297.pdf. Last access on 28 July 2012.

  • An L. Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol Model. 2012;229:25–36.

    Article  Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE. A land use and land cover classification system for use with remote sensor data. USGS professional paper 964. Online at: http://landcover.usgs.gov/pdf/anderson.pdf (1976). Last access on 4 July 2012.

  • Bagan H, Kinoshita T, Yamagata Y. Combination of AVNIR-2, PALSAR, and polarimetric parameters for land cover classification. IEEE T Geosci Remote. 2012;50(4):1318–28.

    Article  Google Scholar 

  • Baskent EZ, Kadiogullari AI. Spatial and temporal dynamics of land use pattern in Turkey: a case study in Inegol. Landscape Urban Plan. 2007;81:316–27.

    Article  Google Scholar 

  • Bastian O. Landscape ecology—towards a unified discipline? Landscape Ecol. 2001;16(8):757–66.

    Article  Google Scholar 

  • Brace N, Kemp R, Snelgar R. SPSS for psychologists. 5th ed. London: Routledge Academic; 2012.

    Google Scholar 

  • Cohen WB, Goward SN. Landsat’s role in ecological applications of remote sensing. Bioscience. 2004;54(6):535–45.

    Article  Google Scholar 

  • Corry RC, Nassauer JI. Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landscape Urban Plan. 2005;72(4):265–80.

    Article  Google Scholar 

  • Dark SJ, Bram D. The modifiable areal unit problem (MAUP) in physical geography. Prog Phys Geog. 2007;31(5):471–9.

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG. Pattern classification. New York: Wiley; 2001.

    Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Change Biol. 2006;12(4):731–50.

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted regression. New York: Wiley; 2002.

    Google Scholar 

  • Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plann A. 1991;23:1025–44.

    Article  Google Scholar 

  • Fu BJ, Liang D, Lu N. Landscape ecology: coupling of pattern, process, and scale. Chinese Geogr Sci. 2011;21(4):385–91.

    Article  Google Scholar 

  • Fuller DO. Forest fragmentation in Loudoun County, Virginia, USA evaluated with multitemporal Landsat imagery. Landscape Ecol. 2001;16:627–42.

    Article  Google Scholar 

  • Gaydos L, Newland WL. Inventory of land-use and land cover of Puget Sound region using Landsat digital data. J Res US Geol Surv. 1978;6:807–14.

    Google Scholar 

  • Haack B, Bryant N, Adams S. An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification. Remote Sens Environ. 1987;21:201–13.

    Article  Google Scholar 

  • Hagen-Zanker A, Lajoie G. Neutral models of landscape change as benchmarks in the assessment of model performance. Landscape Urban Plan. 2008;86(3–4):284–96.

    Article  Google Scholar 

  • Haines-Young R, Chopping M. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geog. 1996;20:418–45.

    Article  Google Scholar 

  • Hepinstall JA, Alberti M, Marzluff JM. Predicting land cover change and avian community responses in rapidly urbanizing environments. Landscape Ecol. 2008;23(10):1257–76.

    Article  Google Scholar 

  • Herzog F, Lausch A. Supplementing land-use statistics with landscape metrics: some methodological considerations. Environ Monit Assess. 2001;72:37–50.

    Article  CAS  PubMed  Google Scholar 

  • Hietel E, Waldhardt R, Otte A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecol. 2004;19(5):473–89.

    Article  Google Scholar 

  • Hu ZY, Lo CP. Modeling urban growth in Atlanta using logistic regression. Comput Environ Urban. 2007;31(6):667–88.

    Article  Google Scholar 

  • Huang C, Geiger E, Kupfer JA. Sensitivity of landscape metrics to classification scheme. Int J Remote Sens. 2006;27:2927–48.

    Article  Google Scholar 

  • Jelinski DE, Wu JG. The modifiable areal unit problem and implications for landscape ecology. Landscape Ecol. 1996;11(3):129–40.

    Article  Google Scholar 

  • Jensen JR. Urban change detection mapping using Landsat digital data. Am Cartographer. 1981;8:127–47.

    Article  Google Scholar 

  • Jensen JR. Introductory digital image processing: a remote sensing perspective. 3rd ed. New Jersey: Prentice Hall; 2005.

    Google Scholar 

  • Jensen JR. Remote sensing of the environment: an Earth resource perspective. New Jersey: Prentice Hall; 2007.

    Google Scholar 

  • Kareiva P, Wennergren U. Connecting landscape patterns to ecosystem and population processes. Nature. 1995;373(6512):299–302.

    Article  CAS  Google Scholar 

  • Kelly M, Tuxen KA, Stralberg D. Mapping changes to vegetation pattern in a restoring wetland: finding pattern metrics that are consistent across spatial scale and time. Ecol Indic. 2011;11(2):263–73.

    Article  Google Scholar 

  • Kupfer JA. Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geog 2012;36:400--420.

    Google Scholar 

  • Lackner M, Conway TM. Determining land-use information from land cover through an object-oriented classification of IKONOS imagery. Can J Remote Sens. 2008;34(2):77–92.

    Article  Google Scholar 

  • Langford WT, Gergel SE, Dietterich TG, Cohen W. Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems. 2006;9:474–88.

    Article  Google Scholar 

  • Legendre P. Spatial autocorrelation: trouble or new paradigm? Ecology. 1993;74:1659–73.

    Article  Google Scholar 

  • Li HB, Wu JG. Use and misuse of landscape indices. Landscape Ecol. 2004;19(4):389–99.

    Article  Google Scholar 

  • Li X, Lu L, Cheng G, Xiao H. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. J Arid Environ. 2001;48:521–35.

    Article  Google Scholar 

  • Lo CP, Yang X. Drivers of land use/cover changes and dynamic modeling in Atlanta metropolitan region. Photogramm Eng Rem S. 2002;68:1073–82.

    Google Scholar 

  • McGarigal K. Landscape pattern metrics. In: El-Shaarawi AH, Piegorsch WW, editors. Encyclopedia of environmetrics, vol. 2. Chichester: Wiley; 2002. p. 1135–42.

    Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS v3: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. 2002. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html. Last access on 10 July 2012.

  • McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. 2012. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html. Last access on 10 July 2012.

  • McGarigal K, Marks BJ. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA forest service technical report PNW-GTR-351. 1995.

    Google Scholar 

  • McGarigal K, McComb WC. Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol Monogr. 1995;65:235–60.

    Article  Google Scholar 

  • McGarigal K, Tagil S, Cushman SA. Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecol. 2009;24(3):433–50.

    Article  Google Scholar 

  • Myint SW, Wang L. Multicriteria decision approach for land use land cover change using Markov chain analysis and a cellular automata approach. Can J Remote Sens. 2006;32(6):390–404.

    Article  Google Scholar 

  • Newton AC, Hill RA, Echeverria C, Golicher D, Benayas JMR, Cayuela L, Hinsley SA. Remote sensing and the future of landscape ecology. Prog Phys Geog. 2009;33(4):528–46.

    Article  Google Scholar 

  • Openshaw S. The modifiable areal unit problem. CATMOG 38. GeoBooks. Norwich: England; 1984.

    Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P. Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr. 2003;93(2):314–37.

    Article  Google Scholar 

  • Paudel S, Yuan F. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int J Appl Earth Obs. 2011;16:66–76.

    Article  Google Scholar 

  • Riitters KH, O’neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL. A factor analysis of landscape pattern and structure metrics. Landscape Ecol. 1995;10:23–39.

    Article  Google Scholar 

  • Robinson DT, Murray-Rust D, Rieser V, Milicic V, Rounsevell M. Modelling the impacts of land system dynamics on human well-being: using an agent-based approach to cope with data limitations in Koper, Slovenia. Comput Environ Urban. 2012;36(2):164–76.

    Article  Google Scholar 

  • Schmidt KS, Skidmore AK, Kloosterman EH, Van Oosten H, Kumar L, Janssen JAM. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm Eng Rem S. 2004;70(7):703–15.

    Article  Google Scholar 

  • Serneels S, Lambin EF. Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agr Ecosyst Environ. 2001;85(1–3):65–81.

    Article  Google Scholar 

  • Seto KC, Fragkias M. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecol. 2005;20:871–88.

    Article  Google Scholar 

  • Shalan MA, Arora MK, Ghosh SK. An evaluation of fuzzy classifications from IRS 1C LISS III imagery: a case study. Int J Remote Sens. 2003;24(15):3179–86.

    Article  Google Scholar 

  • Steiniger S, Hay GJ. Free and open source geographic information tools for landscape ecology. Ecol Inform. 2009;4(4):183–95.

    Article  Google Scholar 

  • Sutherland WJ. Predicting the ecological consequences of environmental change: a review of the methods. J Appl Ecol. 2006;43(4):599–616.

    Article  Google Scholar 

  • Tottrup C. Improving tropical forest mapping using multi-date Landsat TM data and pre-classification image smoothing. Int J Remote Sens. 2004;25:717–30.

    Article  Google Scholar 

  • Troll C. Luftbildplan und ökologische Bodenforschung (Aerial photography and ecological studies of the earth). Zeitschrift der Gesellschaft für Erdkunde. Berlin; 1939. p. 241–98.

    Google Scholar 

  • Turner MG. Landscape ecology—the effect of pattern on process. Annu Rev Ecol Syst. 1989;20:171–97.

    Article  Google Scholar 

  • Turner MG. Landscape ecology: what is the state of the science? Annu Rev Ecol Evol S. 2005;36:319–44.

    Google Scholar 

  • Turner MG, Gardner RH, editors. Quantitative methods in landscape ecology. New York: Springer; 1991.

    Google Scholar 

  • Turner MG, O’Neill RV, Gardner RH, Milne BT. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecol. 1989;3:153–62.

    Article  Google Scholar 

  • Verhoeye J, Wulf RD. Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sens Environ. 2002;79:96–104.

    Article  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A. Land use change modelling: current practice and research priorities. GeoJ. 2004;61:309–24.

    Article  Google Scholar 

  • Walker JS, Briggs JM. An object-oriented approach to urban forest mapping in Phoenix. Photogramm Eng Rem S. 2007;73(5):577–83.

    Article  Google Scholar 

  • Wang J, Yang X. A hierarchical approach to forest landscape pattern characterization. Environ Manage. 2012;49(1):64–81.

    Article  PubMed  Google Scholar 

  • Wickham JD, Oneill RV, Riitters KH, Wade TG, Jones KB. Sensitivity of selected landscape pattern metrics to land-cover misclassification and differences in land-cover composition. Photogramm Eng Rem S. 1997;63(4):397–402.

    Google Scholar 

  • Wu JG. Landscape ecology, cross-disciplinarity, and sustainability science. Landscape Ecol. 2006;21(1):1–4.

    Article  CAS  Google Scholar 

  • Wu JG, Shen WJ, Sun WZ, Tueller PT. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol. 2002;17(8):761–82.

    Article  Google Scholar 

  • Yang X. Use of archival Landsat data to monitor urban spatial growth. In: Yang X, editor. Urban remote sensing: monitoring, synthesis and modelling in the urban environment. Chichester: Wiley; 2011a. p. 15–34.

    Chapter  Google Scholar 

  • Yang X. Parameterizing support vector machines for land cover classification. Photogramm Eng Rem S. 2011b;77(1):27–37.

    Article  Google Scholar 

  • Yang X. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed. J Environ Manage. 2012;90(1):50–60.

    Article  Google Scholar 

  • Yang X, Liu Z. Quantifying landscape pattern and its change in an estuarine watershed using satellite imagery and landscape metrics. Int J Remote Sens. 2005a;26:5297–323.

    Article  Google Scholar 

  • Yang X, Liu Z. Using satellite imagery and GIS to characterize land use and land cover changes in an estuarine watershed. Int J Remote Sens. 2005b;26:5275–96.

    Article  Google Scholar 

  • Yang X, Lo CP. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens. 2002;23(9):1775–98.

    Article  Google Scholar 

  • Yang X, Lo CP. Modelling urban growth and landscape changes in the Atlanta metropolitan area. Int J Geogr Inf Sci. 2003;17(5):463–88.

    Article  Google Scholar 

  • Zhang D, Wallin DO, Hao Z. Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea. Landscape Ecol. 1997;12:241–54.

    Article  Google Scholar 

  • Zhou L, Yang X. An assessment of internal neural network parameters affecting image classification accuracy. Photogramm Eng Rem S. 2011;77(12):1233–40.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the CAS/SAFEA International Partnership Program for Creative Research Teams of “Ecosystem Processes and Services”. The lead author would like to acknowledge the funding support from the U.S. Environmental Protection Agency Great Lakes and Estuarine research program and Florida State University for the time release in conducting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, X., Fu, B., Chen, L. (2013). Remote Sensing and Geospatial Analysis for Landscape Pattern Characterization. In: Fu, B., Jones, K. (eds) Landscape Ecology for Sustainable Environment and Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6530-6_11

Download citation

Publish with us

Policies and ethics