Skip to main content

Magic Numbers in the Discrete Tomography of Cyclotomic Model Sets

  • Conference paper
Aperiodic Crystals
  • 965 Accesses

Abstract

We report recent progress in the problem of distinguishing convex subsets of cyclotomic model sets Λ by (discrete parallel) X-rays in prescribed Λ-directions. It turns out that for any of these model sets Λ there exists a ‘magic number’ m Λ such that any two convex subsets of Λ can be distinguished by their X-rays in any set of m Λ prescribed Λ-directions. In particular, for pentagonal, octagonal, decagonal and dodecagonal model sets, the least possible numbers are in that very order 11, 9, 11 and 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baake M, Huck C (2007) Discrete tomography of Penrose model sets. Philos Mag 87:2839–2846. arXiv:math-ph/0610056

    Article  CAS  Google Scholar 

  2. Baake M, Moody RV (eds) (2000) Directions in mathematical quasicrystals. CRM monograph series, vol 13. AMS, Providence

    Google Scholar 

  3. Baake M, Gritzmann P, Huck C, Langfeld B, Lord K (2006) Discrete tomography of planar model sets. Acta Crystallogr 62:419–433. arXiv:math/0609393

    Google Scholar 

  4. Gardner RJ (2006) Geometric tomography, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  5. Gardner RJ, Gritzmann P (1997) Discrete tomography: determination of finite sets by X-rays. Trans Am Math Soc 349:2271–2295

    Article  Google Scholar 

  6. Huck C (2007) Discrete tomography of Delone sets with long-range order. PhD thesis, Universität Bielefeld. Logos, Berlin

    Google Scholar 

  7. Huck C (2009) Discrete tomography of icosahedral model sets. Acta Crystallogr 65:240–248. arXiv:0705.3005

    CAS  Google Scholar 

  8. Huck C (2009) On the existence of U-polygons of class c≥4 in planar point sets. Discrete Math 309:4977–4981 arXiv:0811.3546

    Article  Google Scholar 

  9. Huck C (2009) Uniqueness in discrete tomography of Delone sets with long-range order. Discrete Comput Geom 42(4):740–758 arXiv:0711.4525

    Article  Google Scholar 

  10. Huck C, SpießM (2012) Solution of a uniqueness problem in the discrete tomography of algebraic Delone sets. J Reine Angew Math. doi:10.1515/crelle.2012.026. arXiv:1101.4149

    Google Scholar 

  11. Ishibashi Y, Sugiura H, Saitoh K, Tanaka N (2011) Three-dimensional reconstruction of the atomic arrangement of icosahedral quasicrystals by binary discrete tomography. Philos Mag 91:2519–2527

    Article  CAS  Google Scholar 

  12. Kisielowski C, Schwander P, Baumann FH, Seibt M, Kim Y, Ourmazd A (1995) An approach to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultramicroscopy 58:131–155

    Article  CAS  Google Scholar 

  13. Moody RV (2000) Model sets: a survey. In: Axel F, Dénoyer F, Gazeau J-P (eds) From quasicrystals to more complex systems. EDP Sciences/Springer, Les Ulis/Berlin, pp 145–166. arXiv:math/0002020

    Google Scholar 

  14. Schwander P, Kisielowski C, Seibt M, Baumann FH, Kim Y, Ourmazd A (1993) Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy. Phys Rev Lett 71:4150–4153

    Article  CAS  Google Scholar 

  15. Steurer W (2004) Twenty years of structure research on quasicrystals, part I: pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z Kristallogr 219:391–446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Council (Deutsche Forschungsgemeinschaft), within the CRC 701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Huck, C. (2013). Magic Numbers in the Discrete Tomography of Cyclotomic Model Sets. In: Schmid, S., Withers, R., Lifshitz, R. (eds) Aperiodic Crystals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6431-6_4

Download citation

Publish with us

Policies and ethics