Skip to main content

Introducing “Colored” Molecular Topology by Reactivity Indices of Electronegativity and Chemical Hardness

  • Chapter
  • First Online:
Topological Modelling of Nanostructures and Extended Systems

Abstract

Within the context of conceptual density functional theory chemical reactivity definitions of electronegativity (EN) and chemical hardness (HD), nine forms of their finite difference are expressed in order to consider the global “coloring” of the molecular topology with respect to their symmetry centers (atomic centers or bonding centers), according to the so-called Timişoara–Parma rule. The resulting parabolic-reactive energy in terms of EN and HD is compared with the bond topological Wiener index for short list of PAH (poly-aromatic hydrocarbons) selected as paradigmatic structures for validating the new reactivity descriptors based on topological quantities.

Dedicated to Professor Ante Graovac, coauthor of this chapter, who prematurely passed away soon after the manuscript was completed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

MVP and AMP thank Romanian Ministry of Education and Research for supporting the present work through the CNCSIS–UEFISCDI project “Quantification of the Chemical Bond Within Orthogonal Spaces of Reactivity. Applications on Molecules of Bio-, Eco- and Pharmaco-Logical Interest,” Code TE-16/2010-2013. MVP thanks German Academic Exchange Service (Deutscher Akademischer Austausch Dienst) for the fellowship DAAD/A/11/05356/322, allowing this chapter to be initiated at Free University of Berlin; MVP and OO are grateful to Prof. Hagen Kleinert and Dr. Axel Pelster for the warm hospitality at Free University Berlin in the summer of 2011 where this chapter was initiated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihai V. Putz or Ottorino Ori .

Editor information

Editors and Affiliations

Appendix 9. A Compact Finite Differences for Electronegativity and Chemical Hardness

Appendix 9. A Compact Finite Differences for Electronegativity and Chemical Hardness

Given the values of a function f(n) on a set of nodes \( \left\{ {\ldots, n{-}3,n-2,n-1,n,n{+}1,} \right. \) \( \left.{n+2,n+3,\ldots } \right\} \), the finite difference approximations of the first \( {{f^{\prime}}_n} \) and second \( {{f^{\prime\prime}}_n} \) derivatives in the node n will spectrally depend on all the nodal values. However, the compact finite differences, or Padé, schemes that mimic this global dependence is written as (Lele 1992)

$$ \begin{array}{llll}[b] {\beta_1}{{{f^{\prime}}}_{n-2 }}& + {\alpha_1}{{{f^{\prime}}}_{n-1 }}+{{{f^{\prime}}}_n}+{\alpha_1}{{{f^{\prime}}}_{i+1 }}+{\beta_1}{{{f^{\prime}}}_{n+2 }} \\ & = {c_1}\frac{{{f_{n+3 }}-{f_{n-3 }}}}{6}+{b_1}\frac{{{f_{n+2 }}-{f_{n-2 }}}}{4}+{a_1}\frac{{{f_{n+1 }}-{f_{n-1 }}}}{2} \end{array} $$
(9.A.1)
$$ \begin{array}{llll} {\beta_2}\,{{{f^{\prime\prime}}}_{n-2 }} &+ {\alpha_2}\,{{{f^{\prime\prime}}}_{n-1 }}+{{{f^{\prime\prime}}}_n}+{\alpha_2}\,{{{f^{\prime\prime}}}_{i+1 }}+{\beta_2}\,{{{f^{\prime\prime}}}_{n+2 }} \\ &= {c_2}\frac{{{f_{n+3 }}{-}2{f_n}{+}{f_{n-3 }}}}{9}\,{+}\,{b_2}\frac{{{f_{n+2 }}{-}2{f_n}{+}{f_{n-2 }}}}{4}\,{+}\,{a_2}\left( {{f_{n+1}}{-}2{f_n}{+}{f_{n-1 }}}\right)\!. \end{array} $$
(9.A.2)

The involved sets of coefficients, \( \left\{ {{a_1},{b_1},{c_1},{\alpha_1},{\beta_1}} \right\} \) and \( \left\{ {{a_2},{b_2},{c_2},{\alpha_2},{\beta_2}} \right\} \), are derived by matching Taylor series coefficients of various orders. In this way, their particularizations can be reached as the second (2C)-, fourth (4C)-, and sixth (6C)-order central differences; standard Pade (SP) schemes; sixth (6T)- and eight (8T)-order tridiagonal schemes; and eighth (8P)- and tenth (10P)-order pentadiagonal schemes up to spectral-like resolution (SLR) ones; see Table 9.1.

Assuming that the function f(n) is the total energy E(N) in the actual node that corresponds to the number of electrons and the compact finite difference, the derivatives of Eqs. (9.2) and (9.5) may be accurately evaluated through considering the states with N − 3, N − 2, N − 1, N + 1, N + 2, and N + 3 electrons, whereas the derivatives in the neighbor states will be taken only as their most neighboring dependency. This way, the working formulas for electronegativity will be (Putz 2010)

$$ \begin{array}{llll}[b] -\chi & = \frac{{\partial E}}{{\partial N}}\left| {_{{\left| N \right\rangle }}} \right. \\ & \cong {a_1}\frac{{{E_{N+1 }}-{E_{N-1 }}}}{2}+{b_1}\frac{{{E_{N+2 }}-{E_{N-2 }}}}{4}+{c_1}\frac{{{E_{N+3 }}-{E_{N-3 }}}}{6} \\ & \quad - {\alpha_1}\left( {\frac{{\partial E}}{{\partial N}}\left| {_{{\left| {N-1} \right\rangle }}} \right.+\frac{{\partial E}}{{\partial N}}\left| {_{{\left| {N+1} \right\rangle }}} \right.}\! \right)-{\beta_1}\left( {\frac{{\partial E}}{{\partial N}}\left| {_{\left| {N-2} \right\rangle}} \right.+\frac{{\partial E}}{{\partial N}}\left| {_{\left| {N+2} \right\rangle}} \right.} \!\right) \\ & = {a_1}\frac{{{E_{N+1 }}-{E_{N-1 }}}}{2}+{b_1}\frac{{{E_{N+2 }}-{E_{N-2 }}}}{4}+{c_1}\frac{{{E_{N+3 }}-{E_{N-3 }}}}{6} \\ & \quad - {\alpha_1}\left( {{a_1}\frac{{{E_N}-{E_{N-2 }}}}{2}+{a_1}\frac{{{E_{N+2 }}-{E_N}}}{2}} \right)\\ & \quad -{\beta_1}\left( {{a_1}\frac{{{E_{N-1 }}-{E_{N-3 }}}}{2}+{a_1}\frac{{{E_{N+3 }}-{E_{N+1 }}}}{2}} \right) \\ & = {a_1}\left( {1+{\beta_1}\,} \right)\frac{{{E_{N+1 }}-{E_{N-1 }}}}{2}+\left( {{b_1}-2{a_1}{\alpha_1}} \right)\frac{{{E_{N+2 }}-{E_{N-2 }}}}{4}\\ & \quad +\left( {{c_1}-3{a_1}{\beta_1}} \right)\frac{{{E_{N+3 }}-{E_{N-3 }}}}{6} \end{array} $$
(9.A.3)

and respectively for the chemical hardness as (Putz et al. 2004)

$$ \begin{array}{llll}[b] 2\eta & = \frac{{{\partial^2}E}}{{\partial {N^2}}}\left| {_{{\left| N \right\rangle }}} \right. \\ & \cong 2{a_2}\frac{{{E_{N+1 }}{-}2{E_N}{+}{E_{N-1 }}}}{2}\,{+}\,{b_2}\frac{{{E_{N+2 }}{-}2{E_N}{+}{E_{N-2 }}}}{4}{+}{c_2}\frac{{{E_{N+3 }}{-}2{E_N}{+}{E_{N-3 }}}}{9} \\ & \quad - {\alpha_2}\left( {\frac{{{\partial^2}E}}{{\partial {N^2}}}\left| {_{{\left| {N-1} \right\rangle }}} \right.+\frac{{{\partial^2}E}}{{\partial {N^2}}}\left| {_{{\left| {N+1} \right\rangle }}} \right.} \! \right)-{\beta_2}\left( {\frac{{{\partial^2}E}}{{\partial {N^2}}}\left| {_{{\left| {N-2} \right\rangle }}} \right.+\frac{{{\partial^2}E}}{{\partial {N^2}}}\left| {_{{\left| {N+2} \right\rangle }}} \right.} \!\right) \\ \end{array} $$
$$ \begin{array}{llll} {} & = 2{a_2}\frac{{{E_{N+1 }}{-}2{E_N}{+}{E_{N-1 }}}}{2}\,{+}\,{b_2}\frac{{{E_{N+2 }}{-}2{E_N}{+}{E_{N-2 }}}}{4}{+}{c_2}\frac{{{E_{N+3 }}{-}2{E_N}{+}{E_{N-3 }}}}{9} \\ & \quad - {\alpha_2}\left( {2{a_2}\frac{{{E_N}-2{E_{N-1 }}+{E_{N-2 }}}}{2}+2{a_2}\frac{{{E_{N+2 }}-2{E_{N+1 }}+{E_N}}}{2}} \right) \\ & \quad - {\beta_2}\left( {2{a_2}\frac{{{E_{N-1 }}-2{E_{N-2 }}+{E_{N-3 }}}}{2}+2{a_2}\frac{{{E_{N+3 }}-2{E_{N+2 }}+{E_{N+1 }}}}{2}} \right) \\ & = 2{a_2}\left( {1+2{\alpha_2}-{\beta_2}} \right)\frac{{{E_{N+1 }}+{E_{N-1 }}}}{2}{+}\left( {8{a_2}{\beta_2}+{b_2}-4{a_2}{\alpha_2}} \right)\frac{{{E_{N+2 }}+{E_{N-2 }}}}{4} \\ & \quad + \left( {{c_2}-9{a_2}{\beta_2}} \right)\frac{{{E_{N+3 }}+{E_{N-3 }}}}{9}-\left( {2{a_2}+\frac{1}{2}{b_2}+\frac{2}{9}{c_2}+2{a_2}{\alpha_2}} \right){E_N}\end{array} $$
(9.A.4)

where the involved parameters discriminate between various schemes of computations and the spectral-like resolution – SLR (Lele 1992).

Next, Eqs. (9.A.3) and (9.A.4) may be rewritten in terms of the observational quantities, as the ionization energy and electronic affinity are with the aid of their basic definitions from the involved eigen-energies of ith (i = 1,2,3) order:

$$ {I_i}={E_{N-i }}-{E_{N-i+1 }} $$
(9.A.5)
$$ {A_i}={E_{N+i-1 }}-{E_{N+i }} $$
(9.A.6)

As such they allow the energetic equivalents for the differences (Putz 2010)

$$ {E_{N+1 }}-{E_{N-1 }}=-\left( {{I_1}+{A_1}} \right) $$
(9.A.7)
$$ {E_{N+2 }}-{E_{N-2 }}=-\left( {{I_1}+{A_1}} \right)-\left( {{I_2}+{A_2}} \right) $$
(9.A.8)
$$ {E_{N+3 }}-{E_{N-3 }}=-\left( {{I_1}+{A_1}} \right)-\left( {{I_2}+{A_2}} \right)-\left( {{I_3}+{A_3}} \right) $$
(9.A.9)

and for the respective sums (Putz et al. 2004)

$$ {E_{N+1 }}+{E_{N-1 }}=\left( {{I_1}-{A_1}} \right)+2{E_N} $$
(9.A.10)
$$ {E_{N+2 }}+{E_{N-2 }}=\left( {{I_1}-{A_1}} \right)+\left( {{I_2}-{A_2}} \right)+2{E_N} $$
(9.A.11)
$$ {E_{N+3 }}+{E_{N-3 }}=\left( {{I_1}-{A_1}} \right)+\left( {{I_2}-{A_2}} \right)+\left( {{I_3}-{A_3}} \right)+2{E_N} $$
(9.A.12)

being then implemented to provide the associate “spectral” molecular analytical forms of electronegativity (Putz 2010)

$$ \begin{array}{llll}[b] {\chi_{\mathrm{CFD}}}&=\left[ {{a_1}\left( {1-{\alpha_1}} \right)+\frac{1}{2}{b_1}+\frac{1}{3}{c_1}} \right]\frac{{{I_1}+{A_1}}}{2} \\ & \quad +\left[ {{b_1}+\frac{2}{3}{c_1}-2{a_1}\left( {{\alpha_1}+{\beta_1}} \right)} \right]\frac{{{I_2}+{A_2}}}{4} \\ & \quad +\left( {{c_1}-3{a_1}{\beta_1}} \right)\frac{{{I_3}+{A_3}}}{6} \end{array} $$
(9.A.13)

and for chemical hardness (Putz et al. 2004)

$$ \begin{array}{llll}[b] {\eta_{\mathrm{CFD}}} & =\left[ {{a_2}\left( {1-{\alpha_2}+2{\beta_2}} \right)+\frac{1}{4}{b_2}+\frac{1}{9}{c_2}} \right]\frac{{{I_1}-{A_1}}}{2} \\& \quad +\left[ {\frac{1}{2}{b_2}+\frac{2}{9}{c_2}+2{a_2}\left( {{\beta_2}-{\alpha_2}} \right)} \right]\frac{{{I_2}-{A_2}}}{4} \\ & \quad +\left[ {\frac{1}{3}{c_2}-3{a_2}{\beta_2}} \right]\frac{{{I_3}-{A_3}}}{6} \end{array} $$
(9.A.14)

It is worth remarking that when particularizing these formulas for the fashioned two-point central finite difference, i.e., when having \( {a_1}=1,{b_1}={c_1}={\alpha_1}={\beta_1}=0 \) and \( {a_2}=1,\,{b_2}={c_2}={\alpha_2}={\beta_2}=0 \) of Table 9.1, one recovers the consecrated Mulliken (spectral) electronegativity (Mulliken 1934)

$$ {\chi_{2\mathrm{C}}}=\frac{{{I_1}+{A_1}}}{2} $$
(9.A.15)

and the chemical hardness basic form relating with the celebrated Pearson nucleophilic–electrophilic reactivity gap (Pearson 1997; Parr and Yang 1989)

$$ {\eta_{2\mathrm{C}}}=\frac{{{I_1}-{A_1}}}{2} $$
(9.A.16)

Finally, for computational purposes, formulas (9.A13) and (9.A14) may be once more reconsidered within the Koopmans’ frozen core approximation (Koopmans 1934), in which various orders of ionization potentials and electronic affinities are replaced by the corresponding frontier energies

$$ {I_i}=-{\varepsilon_{{\mathrm{HOMO}\;(i)}}} $$
(9.A.17)
$$ {A_i}=-{\varepsilon_{{\mathrm{LUMO}\;(i)}}} $$
(9.A.18)

so that the actual working compact finite difference (CFD) orbital molecular electronegativity and chemical hardness unfold as given in Eqs. (9.6) and (9.7), respectively.

Note that the actual CFD electronegativity and chemical hardness expressions do not distinguish for the atoms-in-molecule contributions, while providing post-bonding information and values, i.e., for characterizing the already stabilized/optimized molecular structure towards its further reactive encountering.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Putz, M.V. et al. (2013). Introducing “Colored” Molecular Topology by Reactivity Indices of Electronegativity and Chemical Hardness. In: Ashrafi, A., Cataldo, F., Iranmanesh, A., Ori, O. (eds) Topological Modelling of Nanostructures and Extended Systems. Carbon Materials: Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6413-2_9

Download citation

Publish with us

Policies and ethics