Skip to main content

Role of Rheology in Melt Processing

  • Chapter
  • First Online:
Melt Rheology and its Applications in the Plastics Industry

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Rheological properties govern the behavior of polymers in melt forming operations. This chapter first explores melt behavior in channels, dies and extruders where the viscometric functions play a dominant role. Extrudate swell, wall slip, flow instabilities, and die build-up are described. The remaining operations dealt with are those in which elasticity is important. Processes for making sheet and film are described and processing problems related to rheology are explained. The roles of rheology in blow molding, injection molding, rotational molding and foam formation are taken up in the remainder of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agassant JF, Avenas P, Sergent JP, Caarreau PJ (1991) Polymer processing: principles and modeling. Hanser Publishers, Munich

    Google Scholar 

  2. Tadmor Z, Gogos CG (2006) Principles of polymer processing, 2nd edn. Wiley Interscience, Hoboken

    Google Scholar 

  3. Lee K, Mackley MR, McLeish TCB, Nicholson TM, Harlen OG (2001) Experimental observation of transient “stress fangs” within flowing molten polyethylene. J Rheol 45:1261–1277

    Article  CAS  Google Scholar 

  4. Verbeeten WMH, Peters GWM, Baaijens FPT (2002) Viscoelastic analysis of complex polymer melt flows using the extended pom–pom model. J Nonnewton Fluid Mech 108:301–326

    Article  CAS  Google Scholar 

  5. Michaeli W (2003) Extrusion dies for plastics and rubber, 3rd edn. Hanser, Munich

    Book  Google Scholar 

  6. Debbaut B, Avalosse T, Dooley J, Hughes K (1997) On the development of secondary motions in straight channels induced by the second normal stress difference: experiments and simulations. J Nonnewton Fluid Mech 69:255–271

    Article  CAS  Google Scholar 

  7. Dooley J, Hughes K (2000) Measurement of layer deformation in coextrusion using unique feedblock technology. SPE-ANTEC technical papers 46, 36

    Google Scholar 

  8. Yue P, Dooley J, Feng JJ (2008) A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J Rheol 52:315–332

    Article  CAS  Google Scholar 

  9. Dooley J (2005) Coextrusion instabilities. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New York

    Google Scholar 

  10. Chung CI (2011) Extrusion of polymers: theory and practice, 2nd edn. Hanser Publishers, Munich

    Google Scholar 

  11. Rauwendaal C (1986) Polymer extrusion. Hanser Publishers, Munich

    Google Scholar 

  12. Rauwendaal C (1986) Throughput-pressure relationships for power-law fluids in single-screw extruders. Polym Eng Sci 26:1240–1244

    Article  CAS  Google Scholar 

  13. Zi Z, Gotsis AD (1992) Numerical study of slip at the walls in the extruder. Int Polym Process 7:132–139

    Google Scholar 

  14. Koopmans R, Doelder J, Molenaar J (2011) Polymer melt fracture. CRC Press, New York

    Google Scholar 

  15. Moon D, Rur AJ, Migler KB (2008) Multi-sample micro-slit rheometry. J Rheol 52:1131–1142

    Article  CAS  Google Scholar 

  16. Laun HM, Schuch H (1989) Transient elongational viscosities and drawability of polymer melts. J Rheol 33:119–175

    Article  CAS  Google Scholar 

  17. Han CD, Charles M, Philipoff W (1970) Rheological implications of the exit pressure and die swell in steady capillary flow of polymer melts. I. The primary normal stress difference and the effect of L/D ratio on elastic properties. Trans Soc Rheol 14:393–419

    Article  CAS  Google Scholar 

  18. Utracki LA, Bakerdjian Z, Kamal MR (1975) A method for the measurement of the true die swell of polymer melts. J Appl Polym Sci 19:481–501

    Article  CAS  Google Scholar 

  19. Garcia-Rejon A, Dealy JM (1982) Swell of extrudate from an annular die. Polym Eng Sci 22:158–165

    Article  Google Scholar 

  20. Orbey N, Dealy JM (1984) Isothermal swell of extrudate from annular dies; Effects of die geometry, flow rate and resin characteristics. Polym Eng Sci 24:511–518

    Article  CAS  Google Scholar 

  21. Henderson AM, Rudin A (1986) Effects of die temperature on extrudate swell in screw extrusion. J Appl Polym Sci 31:353–365

    Article  CAS  Google Scholar 

  22. White JL, Huang D (1981) Extrudate swell and extrusion pressure loss of polymer melts flowing through rectangular and trapezoidal dies. Polym Eng Sci 21:1101–1107

    Article  CAS  Google Scholar 

  23. Huang DC, White JL (1979) Extrudate swell from slit and capillary dies: an experimental and theoretical study. Polym Eng Sci 19:609–616

    Article  CAS  Google Scholar 

  24. Stevenson JF, Lee LJ, Griffith RM (1986) Multidimensional control of profile extrusion. Polym Eng Sci 26:233–238

    Article  CAS  Google Scholar 

  25. Hogan TA, Wall P, Dems BC (2008) Investigation of the relationships between die build up and die swell. Polym Eng Sci 48:334–343

    Google Scholar 

  26. Musin J, Zatloukal M (2012) Experimental investigation of flow-induced molecular weight fractionation for two linear HDPE polymer melts. Chem Eng Sci 81:146–156

    Article  Google Scholar 

  27. Giacomin AJ, Schmalzer AM (2012) Die drool theory. J Polym Eng 33(1):1–18

    Google Scholar 

  28. Gander JD, Giacomin AJ (1997) Review of die lip buildup in plastics extrusion. Polym Eng Sci 37:1113–1126

    Article  CAS  Google Scholar 

  29. Van den Bossche L, Georgon O, Donders T, Focquet K, Dewitte G, Briers J (2000) Dyneon Tech Rep 16, Belgium

    Google Scholar 

  30. Satoh N, Tomiyama H, Kjiwara T (2001) Viscoelastic simulation of film casing process for a polymer melt. Polym Eng Sci 41:1564–1579

    Article  CAS  Google Scholar 

  31. Dobroth T, Erwin L (1986) Causes of edge beads in cast films. Polym Eng Sci 26:462–467

    Article  CAS  Google Scholar 

  32. Bezigian T (ed) (1999) Extrusion coating manual, 4th edn. Tappi Press, Atlanta

    Google Scholar 

  33. Co A (2005) Draw resonance in film casting. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New York

    Google Scholar 

  34. Wang J, Mangnus M, Yau W, deGroot W, Karjala T, Demirors M (2008) Structure-property relationships of LDPE. Soc Plast Eng ANTEC:878-881

    Google Scholar 

  35. Clevenhag P-A, Oveby C (2005) Rheological indicators to predict the extrusion coating performance of LDPE. TAPPI J 4:21–23

    CAS  Google Scholar 

  36. Roberts EH, Lucchesi PJ, Kurtz SJ (1986) Draw resonance reduction in melt embossing and extrusion coating resins. Adv Polym Technol 6:65–71

    Article  CAS  Google Scholar 

  37. Steward EL, Cline AW (1987) Barrier screw hikes quality of HMW-HDPE blown film. Plast Eng, September ‘87:45

    Google Scholar 

  38. Proctor B (1972) Flow analysis in extrusion dies. SPE J 28 (Feb) 34

    Google Scholar 

  39. Rauwendaal C (1987) Flow distribution in spiral mandrel dies. Polym Eng Sci 27:186–191

    Article  Google Scholar 

  40. Vlcek J, Vlachopoulos J, Perdikoulias J (1988) Determination of output uniformity from spiral mandrel dies. Int Polym Process 2 ¾:174–181

    Google Scholar 

  41. PerdikouIias J, Vlcek J, Vlachopoulos J (1987) Polymer flow through spiral mandrel dies: a comparison of models. Adv Polym Technol 7:333–341

    Google Scholar 

  42. Kalyon DM, Yu JS, Du C-C (1987) A distributed model of flow in a spiral mandrel die. Polym Proc Eng 5(2):179–207

    Google Scholar 

  43. Gates PC (1987) Film quality improvement through effective die design. SPE ANTEC Tech. Papers XXXIII: 181–183

    Google Scholar 

  44. Housiades KD (2011) A mathematical model to study the effect of the air jet in the film blowing process. Polym Eng Sci 41:301–1315

    Google Scholar 

  45. Zhang Z, Lafleur PG, Bertrand F (2006) Effect of aerodynamics on film blowing process. Int Polym Process 21:527–535

    CAS  Google Scholar 

  46. Meissner J (1975) Basic parameters melt rheology, processing and end-use properties of three similar low-density polyethylene samples. Pure Appl Chem 42:553–612

    Article  Google Scholar 

  47. Farber R, Dealy J (1974) Strain history of the melt in film blowing. Polym Eng Sci 14:435–440

    Article  CAS  Google Scholar 

  48. Huang TA, Campbell GA (1985) Deformational history of LLDPE/LDPE blends on blown film equipment. Adv Polym Technol 5(3):181–192

    Article  CAS  Google Scholar 

  49. Liu T, Harrison IR (1988) Shrinkage of low-density polyethylene film. Polym Eng Sci 28:517–521

    Article  CAS  Google Scholar 

  50. Butler RI (2000) Blown film bubble instability induced by fabrication conditions. SPE ANTEC 46:156–164

    Google Scholar 

  51. Jung HWJ, Hyun JC (2005) Fiber spinning and film blowing instabilities. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New York

    Google Scholar 

  52. Winter HH (1983) A collaborative study on the relationship between film blowing performance and rheological properties of two low-density and two high-density plolyethylene samples. Pure Appl Chem 55:943–976

    Article  CAS  Google Scholar 

  53. Micic P, Bhattacharya SN (2000) Rheology of LLDPE, LDPE and LLDPE/LDPE blends and its relevance to the film blowing process. Polym Int 49:1580–1589

    Article  CAS  Google Scholar 

  54. Higuchi H, Fujikawa S, Sato M, Koyama K (2004) Thickness uniformity of HDPE blown film: relation to rheological properties and density. Polym Eng Sci 44:965–972

    Article  CAS  Google Scholar 

  55. Pearson JRA, Petrie CJS (1970) The flow of a tubular film, part 1. Formal mathematical representation. J Fluid Mech 40:1–19; Part 2, Interpretation of the model and discussion of solutions. J Fluid Mech 42:609–625

    Google Scholar 

  56. Jim MK, Lee JS, Jung HW, Hyun JC (2011) Frequency response analysis of nonisothermal film blowing process using transient simulations. J Appl Polym Sci 123:3028–3035

    Google Scholar 

  57. Kim HT, Darby JP, Wilson GF (1973) Study of the variables affecting pressure drop and temperature rise in blow molding dies. Poly Eng Sci 13:372–381

    Article  CAS  Google Scholar 

  58. Pritchatt RJ, Parnaby J, Worth RA (1975) Design considerations in development of extrudate wall-thickness control in blow molding. Plast Polym 43:55–64

    Article  Google Scholar 

  59. Winter HH, Fritz HG (1986) Design of dies for the extrusion of sheets and annular parisons: the distribution problem. Polym Eng Sci 26:543–553

    Article  CAS  Google Scholar 

  60. KaIyon DM, Kamal MR (1986) An experimental investigation of capillary extrudate swell in relation to parison swell behavior in blow molding. Polym Eng Sci 26:508–516

    Article  Google Scholar 

  61. Cogswell FN, Webb PC, Weeks JC, Maskell SG, Rice PDR (1971) Scientific design of fabrication processes-blow molding. Plast Polym 39:340

    CAS  Google Scholar 

  62. Koopmans RJ (1988) Die swell–molecular structure model for linear polyethylene. J Polym Sci A 26:1157–1164

    Article  CAS  Google Scholar 

  63. Henze ED, Wu WCL (1973) Variables affecting parison diameter swell and their correlation with rheological parameters. Polym Eng Sci 13:153–159

    Article  CAS  Google Scholar 

  64. Jivraj N, Sehanobish K, Ramanathan R, Garcia-Rejon A, Carmel M (2001) Large part blow molding of HDPE resins: parison extrusion behavior and its relationship with resin rheological parameters. Soc Plast Eng ANTEC 876–880

    Google Scholar 

  65. Kalyon D, Tan Kamal MR (1980) The dynamics of parison development in blow molding. Polym Eng Sci 20:773–777

    Article  CAS  Google Scholar 

  66. Yousefi A-M, den Doelder J, Rainville M-A, Koppi KA (2009) A modeling approach to the effect of resin characteristics on parison formation in extrusion blow molding. Polym Eng Sci 49:251–263

    Article  CAS  Google Scholar 

  67. Ajroldi G (1978) Determination of rheological parameters from parison extrusion experiments. Polym Eng Sci 18:742–749

    Article  CAS  Google Scholar 

  68. Sebastion DH, Dearborn JR (1983) Elongation rheology of polyolefin’s and its relation to processability. Polym Eng Sci 23:572–575

    Article  Google Scholar 

  69. Swerdlow M, CogsweIl FN, Krul N (1980) Plast Rubber Process

    Google Scholar 

  70. Ryan ME, Dutta A (1982) The dynamics of parison free inflation in extrusion blow molding. Polym Eng Sci 22:569–577

    Article  CAS  Google Scholar 

  71. Erwin L, Pollack MA, Gonsalez H (1983) Blowing of oriented PET bottles: predictions of free blown size and shape. Polym Eng Sci 23:826–829

    Article  Google Scholar 

  72. Jabarin SA, Lofgren EA (1986) Effects of water absorption on physical properties and degree of molecular orientation of poly (ethylene terephthalate). Polym Eng Sci 26:620–625

    Article  CAS  Google Scholar 

  73. Fifer RL (1981) PET stretch blow molding: experimental data showing container physical characteristics related to a variable container size. SPE ANTEC Tech Pap 27:696

    Google Scholar 

  74. Cakmak M, White JL, Spruiell JE (1985) an investigation of the kinematics of stretch blow molding poly(ethylene-terephthalate) bottles. J Appl Polym Sci 30:3679–3695

    Article  CAS  Google Scholar 

  75. Schaul JS, Hannon MJ, Wisbrun KF (1975) Analysis of factors determining parison properties in high shear rate blow molding. Trans Soc Rheol 19:351–377

    Article  Google Scholar 

  76. Kennedy P (1995) Flow analysis of injection molding. Hanser Publishers, Munich

    Google Scholar 

  77. Kamal MR, Goyal SK, Chu E (1988) Simulation of injection mold filling of viscoelastic polymer with fountain flow. AICHE J 34:94–106

    Article  CAS  Google Scholar 

  78. Richardson SM (1985) Injection moulding of thermoplastics, II. Freezing-off in cavities. Rheol Acta 24:509–518

    Article  CAS  Google Scholar 

  79. Hieber CA, Chiang HH, Ricketoson RC, Jong WR, Wang KK (1987) Melt viscosity characteristics via spiral mold. SPE ANTEC Tech Pap 33:938–941

    Google Scholar 

  80. Hull AM, Richardson SM, Selopranoto JH (1986) Plast Rubber Proc Appl 6:189

    Google Scholar 

  81. Fritch LW (1986) Honing molding parameters by measuring flow length. Plast Eng 42:41–44

    CAS  Google Scholar 

  82. Furches BJ, Kachin GA (1989) SPE Tech Pap 35:1663

    Google Scholar 

  83. Jain NS, Barry CMF, Barry MF (2001) Criteria for flow instabilities in end-gated injection molds. Soc Plast Eng ANTEC 47:471–475

    Google Scholar 

  84. Oda K, White JL, Clark ES (1976) Jetting in injection mold filling. Polym Eng Sci 16:585–592

    Article  CAS  Google Scholar 

  85. Bogaerds ACB, Peters GWM, Baaijens FTP (2005) Instabilities in injection molding. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New York

    Google Scholar 

  86. Kontopoulou M, Vlachopoulos J (2001) Melting and densification of thermoplastic powders. Polym Eng Sci 41:155–169

    Article  CAS  Google Scholar 

  87. Crawford RJ, Throne JL (2002) Rotational molding technology. PDI-William Andrew Publishing, Norwich

    Google Scholar 

  88. Gendron R (2005) Rheological behavior relevant to extrusion foaming. In: Gendron R (ed) Thermoplastic foam processing. CRC Press, Boca Raton

    Google Scholar 

  89. Munstedt H, Kurzbeck S, Stange J (2006) Advances in film blowing, thermoforming, and foaming by using long-chain branched polymers. Macromol Symp 245–246:181–190

    Article  Google Scholar 

  90. Stange J, Münstedt H (2006) Rheological properties and foaming behavior of polypropylenes with different molecular structures. J Rheol 50:907–923

    Article  CAS  Google Scholar 

  91. Mihai M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of long-chain-branched poly (lactic acid). Polym Eng Sci 50:630–642

    Article  Google Scholar 

  92. Zhang Y, Kontopoulou M, Ansari M, Hatzidiriakos S, Park CB (2011) Effect of molecular structure and rheology on compression foam molding of ethylene-α-olefin copolymers. Polym Eng Sci 51:1145–1154

    Article  CAS  Google Scholar 

  93. Qin X, Thompson MR, Hrymak AN (2007) Rheology studies of foam flow during injection mold filling. Polym Eng Sci 47:522–527

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dealy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dealy, J.M., Wang, J. (2013). Role of Rheology in Melt Processing. In: Melt Rheology and its Applications in the Plastics Industry. Engineering Materials and Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6395-1_8

Download citation

Publish with us

Policies and ethics