Skip to main content

Critical Analysis of Parkinson’s Disease Models and Cell-Based Therapy

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 10

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 10))

  • 1457 Accesses

Abstract

The degeneration of neurons because of genetic mutations and other factors in aging populations causes serious complications in normal brain function, which can result in a variety of progressive dysfunctions. Parkinson’s disease (PD) is one type of these dysfunctions that constitutes approximately 0.3% of the total population and 1% of the total old-age population (over 60years). Because of the severity of this disease, it has drawn attention from medical and scientific communities around the world. The existing treatments, such as L-DOPA administration and/or deep brain surgery (DBS), have been found to further complicate the case of the patient. Therefore, alternate therapies have been investigated. Currently, cell-based therapy is a potential alternative to the previously mentioned treatments because of the promising results obtained from animal experiments and limited clinical trials. The experimental Parkinson’s disease models have significantly increased our knowledge on the progression of this disease and the scope of cell therapy. At the same time, the data from these models also raise some questions concerning the relevance of these models in a clinical setting and the efficacy of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberio T, Lopiano L, Fasano M (2012) Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J 279:1146–1155

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Das GD (1965) Post-natal origin of microneurones in the rat brain. Nature 207:953–956

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC, Agid Y (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12:603–610

    PubMed  CAS  Google Scholar 

  • Bayer SA, Wills KV, Triarhou LC, Ghett B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199

    PubMed  CAS  Google Scholar 

  • Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Guzman J, Ilijic E, Mercer J, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  PubMed  Google Scholar 

  • Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, Jackson-Lewis V, Javitch JA, Ballatori N, Przedborski S, Tieu K (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048

    Article  PubMed  CAS  Google Scholar 

  • Doshi K (2011) Long-term surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg 89:89–95

    Article  PubMed  Google Scholar 

  • Fahn S (1996) The case of the frozen addicts: how the solution of an extraordinary medical mystery spawned a revolution in the understanding and treatment of Parkinson’s disease. N Engl J Med 335:2002–2003

    Article  Google Scholar 

  • Fenelon G, Mahieux F, Huon R, Ziegler M (2000) Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain 123(Pt 4):733–745

    Article  PubMed  Google Scholar 

  • Hauser RA, Koller WC, Hubble JP, Malapira T, Busenbark K, Olanow CW (2000) Time course of loss of clinical benefit following withdrawal of levodopa/carbidopa and bromocriptine in early Parkinson’s disease. Mov Disord 15:485–489

    Article  PubMed  CAS  Google Scholar 

  • Hellmann MA, Panet H, Barhum Y, Melamed E, Offen D (2006) Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neurosci Lett 395:124–128

    Article  PubMed  CAS  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, Blesa J, Przedborski S (2012) Animal models of Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S183–S185

    Article  PubMed  Google Scholar 

  • Jin GZ, Cho SJ, Choi EG, Lee YS, Yu XF, Choi KS, Yee ST, Jeon JT, Kim MO, Kong IK (2008) Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biol Int 32:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Su SC, Wang H, Cheng AW, Cassady JP, Lodato MA, Lengner CJ, Chung CY, Dawlaty MM, Tsai LH, Jaenisch R (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9:413–419

    Article  PubMed  CAS  Google Scholar 

  • Koller WC, Rueda MG (1998) Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology 50:S11–S14

    Article  PubMed  CAS  Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    Article  PubMed  CAS  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    PubMed  CAS  Google Scholar 

  • Lindvall O, Barker RA, Brustle O, Isacson O, Svendsen CN (2012) Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10:151–155

    Article  PubMed  CAS  Google Scholar 

  • Lu XH, Fleming SM, Meurers B, Ackerson LC, Mortazavi F, Lo V, Hernandez D, Sulzer D, Jackson GR, Maidment NT, Chesselet MF, Tang MW (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 29:1962–1976

    Article  PubMed  Google Scholar 

  • Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, Freed C, Dhawan V, Eidelberg D (2010) Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-DOPA PET outcomes. J Nucl Med 51:7–15

    Article  PubMed  Google Scholar 

  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    Article  PubMed  CAS  Google Scholar 

  • Muthane UB, Swamy HS, Satishchandra P, Subhash MN, Rao S, Subbakrishna D (1994) Early onset Parkinson’s disease: are juvenile- and young-onset different? Mov Disord 9:539–544

    Article  PubMed  CAS  Google Scholar 

  • Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    PubMed  CAS  Google Scholar 

  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BY, Lee L, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121:2326–2335

    Article  PubMed  CAS  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Schwarz SC, Wittlinger J, Schober R, Storch A, Schwarz J (2006) Transplantation of human neural precursor cells in the 6-OHDA lesioned rats: effect of immunosuppression with cyclosporine A. Parkinsonism Relat Disord 12:302–308

    Article  PubMed  Google Scholar 

  • Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP: an update. FEBS Lett 274:1–8

    Article  PubMed  CAS  Google Scholar 

  • Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2012) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28:1893–1904

    Article  Google Scholar 

  • Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT (2000) In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [3H]-dihydrorotenone. J Neurochem 75:2611–2621

    Article  PubMed  CAS  Google Scholar 

  • Trzaska KA, Kuzhikandathil EV, Rameshwar P (2007) Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells 25:2797–2808

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok Mukhopadhayay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaiswal, A.K., Mukhopadhayay, A. (2013). Critical Analysis of Parkinson’s Disease Models and Cell-Based Therapy. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 10. Stem Cells and Cancer Stem Cells, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6262-6_18

Download citation

Publish with us

Policies and ethics