Skip to main content

Mesenchymal Stem Cells in Bone Regeneration

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 10

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 10))

Abstract

Since the discovery that certain bone marrow cells are capable of ectopic bone formation in 1963, scientists scented new therapeutic strategies to overcome clinical problems of bone defects unable to heal or fuse spontaneously. Today, these cells are defined as Mesenchymal Stem Cells (MSCs) and beside bone marrow other tissues emerged as rich sources for this valuable cell type. Even if their role in endogenous bone regeneration is still under debate, exogenous supply already revealed promising results. Due to proper isolation, proliferation and differentiation into the osteogenic lineage, MSCs were capable for bona fide bone formation in vitro as well as in vivo. Nevertheless, obstacles remain, as clinical utilization of MSCs has not fulfilled the expectations based on animal studies yet. Application of MSCs has the theoretical potential to promote bone healing. Though, further investigations are required in order to implement transplantation of MSCs as a standard procedure in orthopedic and reconstructive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behr B, Hee Ko S, Wong VW, Gurtner GC, Longaker MT (2010a) Stem cells. Plast Reconstr Surg 126:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Behr B, Leucht P, Longaker MT, Quarto N (2010b) Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A 107:11853–11858

    Article  PubMed  CAS  Google Scholar 

  • Behr B, Tang C, Germann G, Longaker MT, Quarto N (2011) Locally applied VEGFA increases the osteogenic healing capacity of human adipose derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells 29:286–296

    Article  PubMed  CAS  Google Scholar 

  • Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282

    Article  PubMed  Google Scholar 

  • Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  PubMed  CAS  Google Scholar 

  • Das A, Botchwey E (2011) Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev 17:403–414

    Article  PubMed  CAS  Google Scholar 

  • Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, Hedrick MH (2006) Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S33–S37

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    PubMed  CAS  Google Scholar 

  • Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54:1215–1228

    Article  PubMed  CAS  Google Scholar 

  • Gimble JM (2003) Adipose tissue-derived therapeutics. Expert Opin Biol Ther 3:705–713

    Article  PubMed  CAS  Google Scholar 

  • Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898

    Article  PubMed  CAS  Google Scholar 

  • Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB (2010) Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone 47:766–772

    Article  PubMed  CAS  Google Scholar 

  • Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    Article  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823

    Article  PubMed  CAS  Google Scholar 

  • Kumagai K, Vasanji A, Drazba JA, Butler RS, Muschler GF (2008) Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26:165–175

    Article  PubMed  Google Scholar 

  • Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373

    Article  PubMed  Google Scholar 

  • Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Article  PubMed  Google Scholar 

  • McIntosh KR, Lopez MJ, Borneman JN, Spencer ND, Anderson PA, Gimble JM (2009) Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A 15:2677–2686

    Article  PubMed  CAS  Google Scholar 

  • Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38:201–209

    Article  PubMed  CAS  Google Scholar 

  • Mirsaidi A, Kleinhans KN, Rimann M, Tiaden AN, Stauber M, Rudolph KL, Richards PJ (2012) Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J Tissue Eng Regen Med 6:378–390

    Article  PubMed  CAS  Google Scholar 

  • Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125

    Article  PubMed  CAS  Google Scholar 

  • Nathan S, De Das S, Thambyah A, Fen C, Goh J, Lee EH (2003) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9:733–744

    Article  PubMed  CAS  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS (2010) Stem cells in bone tissue engineering. Biomed Mater 5:062001

    Article  PubMed  Google Scholar 

  • Taguchi K, Ogawa R, Migita M, Hanawa H, Ito H, Orimo H (2005) The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Commun 331:31–36

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Boyd AS, Wood KJ (2007) Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine. Front Biosci 12:4525–4535

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20:2124–2137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Stephan Winkelmann for his work on the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Behr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer, S., Schulte, M., Hirsch, T., Lehnhardt, M., Behr, B. (2013). Mesenchymal Stem Cells in Bone Regeneration. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 10. Stem Cells and Cancer Stem Cells, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6262-6_1

Download citation

Publish with us

Policies and ethics