Skip to main content

Norway Spruce (Picea abies (L.) H.Karst.)

  • Chapter
  • First Online:
Forest Tree Breeding in Europe

Abstract

Norway spruce (Picea abies (L.) Karst.) is one of the most important coniferous species in Europe both from an economic and ecological point of view. Solid wood products and pulp and paper products have the largest economic value. The patterns of variation observed in Norway spruce provenance trials show geographic variability on a large scale. Genetic variation is also present among offspring from natural populations within the same provenance region and among progenies from trees in the same population. This variation can often be larger than the variability among provenances. Tree improvement of Norway spruce started in Europe in the late 1940s. Breeding programmes were initiated in nearly all European countries but with different intensities. A common objective has been to create base material for seed procurement. Breeding objectives differ between countries, but most of them include adaptation and health, volume production and wood quality in some way. Genetic gains in volume per area unit from first round of seed orchards is around 10 % and from new seed orchards established with tested material expected to be between 20 and 25 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheré V, Favre M, Besnard G, Jeandoz S (2005) Genomic organisation of molecular differentiation in Norway spruce (Picea abies). Mol Ecol 14:3191–3201

    PubMed  Google Scholar 

  • Almqvist C (2008) Practical use of GA4/7 to stimulate flower production in Picea abies seed orchards in Sweden. In: Lindgren D (ed) Proceedings of a seed orchard conference, Umeå, 26–28 Sept 2007, pp 16–24

    Google Scholar 

  • Almqvist C, Wennström U, Karlsson B (2010) Improved forest regeneration material 2010–2050. Supply and needs, and measures to minimize shortage and maximize genetic gain. Skogforsk, Redogörelse Nr 3, 59p (in Swedish with English summary)

    Google Scholar 

  • Arnerup J, Swedjemark G, Elfstrand M, Karlsson B, Stenlid J (2010) Variation in growth of Heterobaision parviporum in a full-sib family of Picea abies. Scand J For Res 25:106–110

    Google Scholar 

  • Barzdajn W (2007) Vegetative propagation. In: Mark GT, Adam B, Wladyslaw B (eds) Biology and ecology of Norway spruce, vol 78, Forestry sciences. Springer, Dordrecht, pp 107–114

    Google Scholar 

  • Baudin A (1989) The Swedish sawnwood market. Part 1: End-use of sawn wood within sectors 1970/1988. Report no. 6. SIMS, SLU, Uppsala (in Swedish with English summary)

    Google Scholar 

  • Bentzer BG (1988) Rooting and early shoot characteristics of Picea abies (L.) Karst. cuttings originating from shoots with enforced vertical growth. Scand J For Res 3:481–491

    Google Scholar 

  • Bentzer BG (1993) Strategies for clonal forestry with Norway spruce. In: Ahuja MR, Libby WJ (eds) Clonal forestry II. Springer, Berlin/Heidelberg/Germany, pp 120–138

    Google Scholar 

  • Bergmann F (1974) Genetischer Abstand zwischen Populationen. II. Die Bestimmung des genetischen Abstands zwischen europäischen Fichtenpopulationen (Picea abies) auf der Basis von Isoenzym-Genhäufigkeiten. Silvae Genet 23(1–3):28–32

    Google Scholar 

  • Bergmann F, Gregorius HR (1979) Comparison of the genetic diversities of various populations of Norway spruce (Picea abies). In: Proceedings of the conference on biochemical genetics of forest trees, Umeå, 1979, pp 99–107

    Google Scholar 

  • Bergmann F, Hosius B (1996) Effect of heavy-metal polluted soils on the genetic structure of Norway spruce seedling populations. Water Air Soil Pollut 89:363–373

    CAS  Google Scholar 

  • Bergmann F, Scholz F (1987) The impact of air pollution on the genetic structure of Norway spruce. Silvae Genet 36(2):80–83

    Google Scholar 

  • Bjørnstad Å (1981) Photoperiodical after-effect of parent plant environment in Norway spruce (Picea abies (L.) Karst) seedlings. Medd Nor Inst Skogforsk 36:30

    Google Scholar 

  • Bleymüller H (1976) Investigations on the dependence of flowering in spruce (Picea abies (L.) Karst.) upon age and hormone treatment. Silvae Genet 25(2):83–85

    Google Scholar 

  • Bonnet-Masimbert M (1987) Preliminary results on gibberellin induction of flowering of seedlings and cuttings of Norway spruce indicate some carry-over effect. For Ecol Manage 19:163–171

    CAS  Google Scholar 

  • Breitenbach-Dorfer M (1996) Genetic analysis of spruce stands in the Limestone Alps – a pilot study. Phyton (Horn, Austria) 36:23–32

    Google Scholar 

  • Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934

    PubMed  CAS  Google Scholar 

  • Burczyk J, Lewandowski A, Chalupka W (2004) Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [l.] Karst.). For Ecol Manage 197(1–3):39–48

    Google Scholar 

  • Campbell RK, Sugano AI (1979) Genecology of bud-burst phenology in Douglas-fir. Response to flushing temperature and chilling. Bot Gaz 140:223–231

    Google Scholar 

  • Chalupka W (1979) Effect of growth regulators on flowering of Norway spruce (Picea abies (L.) Karst.) grafts. Silvae Genet 28(4):125–127

    CAS  Google Scholar 

  • Chalupka W (1981) Influence of growth regulators and polythene covers on flowering of Scots pine and Norway spruce grafts. Silvae Genet 30(4–5):142–146

    CAS  Google Scholar 

  • Chalupka W (1997) Carry-over effect of GA4/7 and ringing on female flowering in Norway spruce (Picea abies (L.) Karst.) seedlings. Ann For Sci 54(3):237–241

    Google Scholar 

  • St. Clair JB, Kleinschmit J, Svolba J (1985) Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.). Silvae Genet 34(1):42–48

    Google Scholar 

  • Collignon AM, Van de Sype H, Favre JM (2002) Geographical variation in random amplified polymorphic DNA and quantitative traits in Norway spruce. Can J For Res 32:266–282

    CAS  Google Scholar 

  • Costa e Silva J, Borralho NMG, Wellendorf H (2000a) Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst. Silvae Genet 49:29–36

    Google Scholar 

  • Costa e Silva J, Wellendorf H, Borralho NMG (2000b) Prediction of breeding values and expected gains in diameter growth, wood density and spiral grain from parental selections in Picea abies (L.) Karst. Silvae Genet 49:102–109

    Google Scholar 

  • Danell Ö (1991) Survey of past, current and future Swedish forest tree breeding. Silva Fennica 25:241–247

    Google Scholar 

  • Danell Ö (1993) Breeding programmes in Sweden. 1. General approach. In: Lee SJ (ed) Progeny testing and breeding strategies. Proceedings from a meeting with the Nordic group of tree breeding, Forestry Commission, Edinburgh, Oct 1993

    Google Scholar 

  • Danusevičius D (1999) Early genetic evaluation of tolerance to frost-related stresses in Picea abies. Doctoral thesis, Silvestria 103, Swedish University of Agricultural Sciences, Uppsala, 38p (appendix with 4 scientific papers)

    Google Scholar 

  • Danusevičius D, Garbrilavičius R (2002) Genetic variation in juvenile wood basic density at different stages of development in Norway spruce. Baltic Forest 8(2):23–32

    Google Scholar 

  • Danusevičius D, Lindgren D (2002a) Comparison of phenotypic, clonal and progeny supported selection in long-term tree breeding. Silvae Genet 51(1):19–26

    Google Scholar 

  • Danusevičius D, Lindgren D (2002b) Two stage selection strategies in tree breeding considering gain, diversity, time and cost. For Genet 9(2):145–157

    Google Scholar 

  • Dekker-Robertson DL, Kleinschmit J (1991) Serial propagation in Norway spruce (Picea abies (L.) Karst.): results from later propagation cycles. Silvae Genet 40:202–214

    Google Scholar 

  • Dering M, Lewandowski A (2009) Finding the meeting zone: where have the northern and southern ranges of Norway spruce overlapped? For Ecol Manage 259:229–235

    Google Scholar 

  • Dietrichson J (1969) The geographic variation in spring-frost resistance and growth cessation in Norway spruce (Picea abies (L.) Karst.). Medd Nor SkogforsVes 27:91–104

    Google Scholar 

  • Dietrichson J (1971) A summary of studies on genetic variation in forest trees grown in Scandinavia with special reference to the adaptation problem. Medd Nor SkogforsVes 29:25–99

    Google Scholar 

  • Dietrichson J (1973) Genetic variation among trees, stands and provenances of Norway spruce in alpine southern Norway. IUFRO meeting “Norway spruce provenances”, Biri (unpublished), 12pp

    Google Scholar 

  • Dormling I (1973) Photoperiodic control of growth and growth cessation in Norway spruce seedlings. In: Proceedings of IUFRO meeting dormancy in trees, Kórnik, 1973, pp 1–16

    Google Scholar 

  • Dormling I (1979) Influence of light intensity and temperature on photoperiodic response of Norway spruce provenances. In: Proceedings of IUFRO meeting of WP Norway spruce provenances (S 2.03.11) and Norway spruce breeding (S 2.02.11), Bucharest, 1979, pp 398–407

    Google Scholar 

  • Dormling I (1993) Bud dormancy, frost hardiness and frost drought in seedlings of Pinus sylvestris and Picea abies. In: Li PH, Christersson L (eds) Advances in cold hardiness. CRC Press, Boca Raton, pp 285–298

    Google Scholar 

  • Dunberg A (1980) Stimulation of flowering in Picea abies by gibberellins. Silvae Genet 29(2):51–53

    CAS  Google Scholar 

  • Edvardsen ØM (2010) Strategi for skogsplanteforedling 2010–2040. Skogfrøverket, Hamar

    Google Scholar 

  • Ekberg I, Eriksson G, Weng X (1985) Between- and within-population variation in growth rhythm and plant height in four Picea abies populations. Stud For Suec 167:14

    Google Scholar 

  • Ekberg I, Eriksson G, Nilsson C (1991) Consistancy of phenology and growth of intra- and interprovenance families of Picea abies. Scand J For Res 6:323–333

    Google Scholar 

  • El-Kassaby YA, Askew GR (1998) Chapter 6: Seed orchards and their genetics. In: Mandal AK, Gibson GL (eds) Forest genetics and tree breeding. CBS Publishers and Distributors, Daryaganj, pp 103–111

    Google Scholar 

  • El-Kassaby YA, Lstiburek M (2009) Breeding without breeding. Genet Res 91(2):111–120

    Google Scholar 

  • Eriksson G (1982) Ecological genetics of conifers in Sweden. Silva Fennica 16:149–156

    Google Scholar 

  • Eriksson G (2010) Picea abies. Recent genetic research. Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, 192p. Also available on: http://vaxt2.vbsg.slu.se/vbsg-pics/Picea-recent.pdf

  • Giannini R, Morgante M, Vendramin GG (1991) Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genet 40(3–4):160–166

    Google Scholar 

  • Giertych M (1976) Summary results from the IUFRO 1938 Norway spruce (Picea abies (L.) Karst.) provenance experiment. Silvae Genet 5:154–164

    Google Scholar 

  • Giertych M (1979) Summary results of the IUFRO 1938 Norway spruce (Picea abies L. Karst.) provenance experiment. Height growth. Silvae Genet 28(4):136

    Google Scholar 

  • Giertych M (1984) Report on the IUFRO 1938 and 1939 provenance experiments on Norway spruce (Picea abies (L.) Karst.). Instytut Dendrologii PAN, Kórnik, 179p

    Google Scholar 

  • Giertych M (2001) The 1964/68 IUFRO inventory provenance test of Norway spruce. In: Bałut S, Sabor J (eds) Inventory provenance test of Norway spruce (Picea abies (L.) Karst.) IPTNS-IUFRO 1964/68 in Krynica. AR, Kraków, pp 7–10

    Google Scholar 

  • Giertych M (2007) Provenance variation and inheritance. In: Mark GT, Adam B, Wladyslaw B (eds) Biology and ecology of Norway spruce, vol 78, Forestry sciences. Springer, Dordrecht, pp 116–146

    Google Scholar 

  • Gömöry D (1992) Effect of stand origin on the genetic diversity of Norway spruce (Picea abies Karst.) populations. For Ecol Manage 54:215–223

    Google Scholar 

  • Goncharenko GG, Potenko VV (1990) Izmenchivost i diferentsiyatsiya u jeli evropejskoj Picea abies (L.) Karst. v populyatsiyach Ukrajiny, Belorusii i Latvii. [Variation and differentiation in Norway spruce (Picea abies (L.) Karst.) in Ukrainian, Byelorussian and Latvian populations]. Dokl Akad Nauk SSSR 314(2):492–497

    CAS  Google Scholar 

  • Goncharenko GG, Zadeika IV, Birgelis JJ (1995) Genetic structure, diversity and differentiation of Norway spruce (Picea abies (L.) Karst.) in natural populations of Latvia. For Ecol Manage 72:31–38

    Google Scholar 

  • Gräns D, Hannrup B, Isik F, Lundqvist S-O, McKeand S (2009) Genetic variation and relationships to growth traits for microfibril angle, wood density and modulus of elasticity in a Picea abies clonal trial in southern Sweden. Scand J For Res 24:494–503

    Google Scholar 

  • Gugerli F, Sperisen C, Buchler U, Magni F, Geburek T, Jeandoz S, Senn J (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial recolonization of the western Alps. Mol Ecol 10:1255–1263

    PubMed  CAS  Google Scholar 

  • Haapanen M (2009) Clones in Finnish tree breeding. In: Working papers of the Finnish Forest Research Institute 114, pp 16–19. Vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in 10th–11th Sept 2008 at Punkaharju. http://www.metla.fi/julkaisut/workingpapers/2009/mwp114.htm

  • Hallingbäck H, Jansson G, Hannrup B (2008) Genetic parameters for grain angle in 28-year-old Norway spruce progeny trials and their parent seed orchard. Ann For Sci 65:301p1–301p8

    Google Scholar 

  • Hallingbäck HR, Jansson G, Hannrup B (2010) Genetic correlations between spiral grain and growth and quality traits in Picea abies. Can J For Res 40:173–183

    Google Scholar 

  • Hamrick JL (2004) Dynamics and conservation of genetic diversity in forest ecology. For Ecol Manage 197:323–335

    Google Scholar 

  • Hannerz M (1998) Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers – a review and annotated bibliography. Report no. 2, Skogforsk, 140 p

    Google Scholar 

  • Hannerz M (1999) Early testing of growth rhythm in Picea abies for prediction of frost damage and growth in the field. PhD thesis, Silvestria 85, Swedish University of Agricultural Sciences, Uppsala, 45p

    Google Scholar 

  • Hannerz M, Sonesson J, Ekberg I (1999) Genetic correlations between growth and growth rhythm observed in a short-term test and performance in long-term field trials of Norway spruce. Can J For Res 29:768–778

    Google Scholar 

  • Hannrup B, Säll H, Jansson G (2003) Genetic parameters for spiral grain in Scots pine and Norway spruce. Silvae Genet 52(5–6):215–220

    Google Scholar 

  • Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Le Bayon I, Jones GL, Müller U, Pereira H, Rodrigues JC, Rosner S, Rozenberg P, Wilhelmsson L, Wimmer R (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand J For Res 19:14–29

    Google Scholar 

  • Hansen JK, Saxe H, Ræbild A, Nielsen CN, Simonsen JP, Larsen JB, Wellendorf H (1998) Decline and physiological response to foliar-deposited salt in Norway spruce genotypes: a comparative analysis. Can J For Res 28:1879–1889

    Google Scholar 

  • Heuertz M, Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway Spruce [Picea abies (L) Karst]. Genetics 174:2095–2105

    PubMed  CAS  Google Scholar 

  • Hosius B, Bergmann F (1993) Adaptation of Norway spruce to heavy metal contaminated soils. In: Rone V (ed) Norway spruce provenances and breeding: Proceedings of the IUFRO S 2.2.11 symposium Latvia 1993, Riga, pp 200–207

    Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas to past and present pollen maps of Europe 0–13000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Hylen G (1997) Genetic variation of wood density and its relationship with growth traits in young Norway spruce. Silvae Genet 46(1):55–60

    Google Scholar 

  • Johnsen Ø, Skrøppa T, Haug G, Apeland I, Østreng G (1995) Sexual reproduction in a greenhouse and reduced autumn frost hardiness of Picea abies progenies. Tree Physiol 15:551–555

    PubMed  Google Scholar 

  • Johnsen Ø, Kvaalen H, Yakovlev I, Dæhlen OG, Fossdal CG, Skrøppa T (2009) An epigenetic memory from time of embryo development affect climatic adaptation in Norway spruce. In: Gusta LV, Wisniewski ME, Tanio KK (eds) Plant cold hardiness: from laboratory to the field. CABI, Wallingford, pp 97–107

    Google Scholar 

  • Kang K-S (2001) Genetic gain and gene diversity of seed orchard crops. Doctoral thesis, Silvestria 187, Swedish University of Agricultural Sciences, Sweden, 75p

    Google Scholar 

  • Kannenberg N, Gross K (1999) Allozymic variation in some Norway spruce populations of the international IUFRO provenance-testing programme of 1964/1968. Silvae Genet 48(5):209–217

    Google Scholar 

  • Karlsson B, Högberg K-A (1998) Genotypic parameter and clone x site interaction in clone tests of Norway Spruce (Picea abies (L.) Karst.). For Genet 5(1):21–30

    Google Scholar 

  • Karlsson B, Rosvall O (1993) Breeding programmes in Sweden. 3. Norway spruce. In: Lee SJ (ed) Progeny testing and breeding strategies. Proceedings from a meeting with the Nordic group of tree breeding, Forestry Commission, Edinburgh, Oct 1993, pp 128–134

    Google Scholar 

  • Karlsson B, Rosvall O (2010) Ökad tillgång och användning av förädlade plantor. Uppdrag om förbättrat växtodlingsmaterial, Jo2008/1883 (in Swedish)

    Google Scholar 

  • Karlsson B, Swedjemark G (2006) Genotypic variation in natural infection frequency of Heterobsidion spp in a Picea abies clone trial in southern Sweden. Scand J For Res 21:108–114

    Google Scholar 

  • Karlsson B, Wellendorf H, Roulund H, Werner M (2001) Genotype  ×  trial interaction and stability across sites in 11 combined provenance and clone experiments with Picea abies in Denmark and Sweden. Can J For Res 31:1826–1836

    Google Scholar 

  • Kempf M, Faber A, Sabor J (2007) Isoenzymatic and DNA polymorphism in progenies of spruce stands from some Krutzsch regions of IUFRO 1964/68 provenance test in Krynica. In: Proceedings of the IUFRO conference Norway spruce in the conservation of forest ecosystems in Europe, Warszawa, 3–5 Sept 2007

    Google Scholar 

  • Kleinschmit J (1977) Probleme bei der vegetativen Vermehrung. Allg Forst-u J-Ztg Jg 5:81–86

    Google Scholar 

  • Kleinschmit J, Müller W, Schmidt J, Racz J (1973) Entwicklung der Stecklingsvermehrung von Fichte (Picea abies (L.) Karst.) zur Praxisreife. Silvae Genet 26:197–203

    Google Scholar 

  • Kowalczyk J (2008) Combining production of improved seeds with genetic testing in seedling seed orchards. In: Lindgren D (ed) Proceedings of a seed orchard conference, Umeå, 26–28 Sept 2007, pp 118–126

    Google Scholar 

  • Kowalczyk J, Markiewicz P, Matras J (2009) Intra-population variability of Picea abies from Zwierzyniec Lubelski and Blizyn (Poland). Dendrobiology 61:69–77

    Google Scholar 

  • Krutzsch P (1973) Norway spruce development of buds. Internal report IUFRO S2.02.11.4, IUFRO, Vienna

    Google Scholar 

  • Krutzsch P (1974) The IUFRO 1964/68 provenance test with Norway spruce (Picea abies (L.) Karst.). Silvae Genet 23:1–3

    Google Scholar 

  • Krutzsch P (1986) An investigation on bud set in Norway spruce (Picea abies). Report no. 6, Department of Forest Genetics and Plant Physiology, Swedish University of Agriculture Sciences, pp 21–32

    Google Scholar 

  • Krutzsch P (1992) IUFRO’s role in coniferous tree improvement. Norway spruce (Picea abies (L.) Karst.). Silvae Genet 41(3):143

    Google Scholar 

  • Kvaalen H, Johnsen Ø (2008) Timing of bud set in Norway spruce is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177:49–59

    PubMed  Google Scholar 

  • Lagercrantz U, Ryman N (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44(1):38–53

    Google Scholar 

  • Larsen AB, Wellendorf H, Roulund H (1997) Realized correlated response at late stage from upward, downward, and stabilizing selection at nursery stage in Picea abies. For Genet 4:189–199

    Google Scholar 

  • Leinonen I (1996) Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scand J For Res 11:122–128

    Google Scholar 

  • Lewandowski A, Burczyk J (2002) Allozyme variation of Picea abies in Poland. Scand J For Res 17:487–494

    Google Scholar 

  • Lindgren D (2009) A way to utilise the advantages of clonal forestry for Norway spruce? In: Working papers of the Finnish Forest Research Institute 114, pp 8–15. Vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in 10th–11th Sept 2008 at Punkaharju. http://www.metla.fi/julkaisut/workingpapers/2009/mwp114.htm

  • Lindgren D, Matheson AC (1986) An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genet 35(5–6):173–177

    Google Scholar 

  • Lindgren D, Karlsson B, Andersson B, Prescher F (2008) Swedish seed orchards for Scots pine and Norway spruce. In: Lindgren D (ed) Proceedings of a seed orchard conference, Umeå, 26–28 Sept 2007, pp 134–147

    Google Scholar 

  • Litkowiec M, Dering M, Lewandowski A (2009) Utility of two mitochondrial markers for identification of Picea abies refugial origin. Dendrobiology 61:65–71

    CAS  Google Scholar 

  • Lundkvist K (1979) Allozyme frequency distributions in four Swedish populations of Norway Spruce (Picea abies K.). Hereditas 90:127–143

    Google Scholar 

  • Lundkvist K, Rudin D (1977) Genetic variation in eleven populations of Picea abies as determined by isozyme analysis. Hereditas 85:67–74

    Google Scholar 

  • Luukkanen O (1980) Flower induction by exogenous plant hormones in Scots pine and Norway spruce grafts. Silva Fennica 14(2):95–105

    Google Scholar 

  • Maghuly F, Pinsker W, Praznik W, Fluch S (2007) Differentiation among Austrian populations of Norway spruce (Picea abies (L.) Karst.) assayed by mitochondrial DNA markers. Tree Genet Genomes 3:199–206

    Google Scholar 

  • Matras J (2009) Growth and development of Polish provenances of Picea abies in the IUFRO 1972 experiment. Dendrobiology 61:145–158

    Google Scholar 

  • Mejnartowicz L, Lewandowski A (2007) Biochemical genetics. In: Mark GT, Adam B, Wladyslaw B (eds) Biology and ecology of Norway spruce, vol 78, Forestry sciences. Springer, Dordrecht, pp 147–155

    Google Scholar 

  • Mihai G (ed) (2009) Tested seed sources for the main forest species in Romania. Editura Silvică, Bucureşti, 281 p

    Google Scholar 

  • Modrzyński J, Prus-Glowacki W (1998) Isoenzymatic variability in some of the Polish populations of Norway spruce (Picea abies) in the IUFRO-1972 provenance trial. Acta Soc Bot Polon 67:75–82

    Google Scholar 

  • Moren AS, Perttu KL (1994) Regional temperature and radiation indices and their adjustment to horizontal and inlined forest land. Stud For Suec 194:1–19

    Google Scholar 

  • Müller-Starck G (1995) Genetic variation under extreme environmental conditions. In: Baradat P, Adams WT, Müller-Starck G (eds) Population genetics and genetic conservation of forest trees. SPB Academic Publishing, Amsterdam, pp 201–210

    Google Scholar 

  • Nieman TC, Boyle TJB (1989) Estimate of genetic parameters for Norway spruce population after intensive mass selection. In: Stener L-G, Werner M (eds) Norway spruce; provenances, breeding and genetic conservation. Proceedings from IUFRO working party meeting S2.02.11 in Sweden 1988. The Institute for forest tree improvement, Report no. 11, pp 124–141

    Google Scholar 

  • Nikkanen T (2002) Functioning of a Norway spruce (Picea abies (L.) Karst.) seed orchard. Research papers 850, Finnish Forest Research Institute, Vantaa, 58p  +  6 appendices

    Google Scholar 

  • Nikkanen T (2008) A review of Scots pine and Norway spruce seed orchards in Finland. In: Lindgren D (ed) Proceedings of a seed orchard conference, Umeå, 26–28 Sept 2007, pp 164–167

    Google Scholar 

  • Oleksyn J, Modrzyński J, Tjoelker M, Żytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from a broad elevational transect: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590

    Google Scholar 

  • Owens JN, Johnsen Ø, Dæhlen OG, Skrøppa T (2001) Potential effects of temperature on early reproductive development and progeny performance in Picea abies (L.) Karst. Scand J For Res 16:221–237

    Google Scholar 

  • Pakkanen A, Nikkanen T, Pulkkinen P (2000) Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scand J For Res 15(4):399–404

    Google Scholar 

  • Pârnuţă G (1991) Selecţia ideotipurilor de molid cu coroană îngustă şi rezistente la rupturi de zăpadă. Revista pădurilor 3:123–128 (Selection of narrow-crowned spruce ideotypes resistant to snow throws. Romanian For J)

    Google Scholar 

  • Pârnuţă G (2008) Variabilitatea genetica şi ameliorarea arborilor de molid cu coroană îngustă in România (Genetic variability and improvement of narrow-crowned Norway spruce trees in Romania). Seria a II-a Lucrări de Cercetare. Editura Silvică, Bucureşti, 181p

    Google Scholar 

  • Pârnuţă G, Lorenţ A (2007) Stabilirea şi delimitarea noilor regiuni de provenienţă pentru materialele forestiere de reproducere din România (Establishment and delineation of the new regions of provenances for forest reproductive materials in Romania). In: Proceedings of the biennial international symposium: forest and sustainable development, Braşov, 27–28 Oct 2006. Editura Universităţii Transilvania, Braşov, pp 85–100

    Google Scholar 

  • Paule L, Gömöry D (1993) Genetic structure of Norway spruce (Picea abies Karst.) populations from mountaineous areas in Slovakia. Lesnictví – Forestry 39(1):10–13

    Google Scholar 

  • Paule L, Szmidt AE, Yazdani R (1990) Isozyme polymorphism of Norway spruce (Picea abies Karst.) in Slovakia. I. Genetic structure of adjacent populations. Acta Facultatis Forestalis Zvolen 32:57–70

    Google Scholar 

  • Paule L, Lindgren D, Yazdani R (1993) Allozyme frequencies, outcrossing rate and pollen contamination in Picea abies seed orchards. Scand J For Res 8:8–17

    Google Scholar 

  • Persson A, Persson B (1992) Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swedish sites of the IUFRO 1964/68 provenance experiment. Report no. 29, Department of Forest Yield Research, Swedish University of Agriculture Sciences, Uppsala, 67p

    Google Scholar 

  • Pollard DFW, Logan KT (1974) The role of free growth in the differentiation of provenances of black spruce Picea mariana (Mill.) B.S.P. Can J For Res 4:308–311

    Google Scholar 

  • Prescher F (2007) Seed orchards – genetic considerations on function, management and seed procurement. Doctoral thesis, No. 207:75, Swedish University of Agricultural Sciences, Umeå, 2007, 49p

    Google Scholar 

  • Prescher F, Lindgren D, Karlsson B (2008) Genetic thinning of clonal seed orchards using linear deployment may improve both gain and diversity. For Ecol Manage 254:188–192

    Google Scholar 

  • Prus-Glowacki W, Godzik S (1995) Genetic structure of Picea abies trees tolerant and sensitive to industrial pollution. Silvae Genet 44:2–3

    Google Scholar 

  • Qamaruddin M, Dormling I, Ekberg I, Eriksson G, Tillberg E (1993) Abscisic acid at defined levels of bud dormancy and frost tolerance in two contrasting populations of Picea abies grown in a phytotron. Physiol Plant 87:203–210

    CAS  Google Scholar 

  • Ravensbeck L (1991) Aktuelle nåletab i proviniensforsøg med rødgran (in Danish). Skoven 8:279–282

    Google Scholar 

  • Rosvall O (ed) (2011) Review of the Swedish tree breeding program. Skogforsk, Uppsala, 84p. ISBN 978-91-977649-6-4

    Google Scholar 

  • Rosvall O, Ståhl P (2008) New Swedish seed orchard program. In: Lindgren D (ed) Proceedings of a seed orchard conference, Umeå, 26–28 Sept 2007, pp 185–186

    Google Scholar 

  • Rosvall O, Lindgren D, Mullin TJ (1998) Sustainability, robustness and efficiency of a multi-generation breeding strategy based on within-family clonal selection. Silvae Genet 47(4–5):307–320

    Google Scholar 

  • Rosvall O, Jansson G, Andersson B, Ericsson T, Karlsson B, Sonesson J, Stener L-G (2001) Genetiska vinster i nuvarande och framtida fröplantager och klonblandningar. Redogörelse nr 1, Skogforsk

    Google Scholar 

  • Roulund H (1975) The effect of the cyclophysis and the topophysis on the rooting ability and behaviour of Norway spruce cuttings. Acta Horticulturae 54:39–50

    Google Scholar 

  • Rozenberg P, Cahalan C (1997) Spruce and wood quality: genetic aspects (a review). Silvae Genet 46:270–279

    Google Scholar 

  • Ruden T (1963) Results from an 11-year old progeny test with Picea abies (L.) Karst. in south eastern Norway. In: Proceedings of FAO/FORGEN World Consultation on Forest Genetics and Tree Improvement, Sweden, 1963, pp 1–7

    Google Scholar 

  • Scheepers D, Eloy MC, Briquet M (1997) Use of RAPD patterns for clone verification and in studying provenance relationships in Norway spruce (Picea abies). Theor Appl Genet 94:480–485

    CAS  Google Scholar 

  • Scholz F, Bergmann F (1984) Selection pressure by air pollution as studied by isozyme - gene - systems in Norway spruce exposed to sulphur dioxide. Silvae Genet 33(6):238–240

    Google Scholar 

  • Scotti I, Vendramin GG, Matteotti LS, Scarponi C, Sari-Gorla M, Binelli G (2000) Postglacial recolonization routes for Picea abies K. in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers. Mol Ecol 6:699–708

    Google Scholar 

  • Scotti I, Gugerli F, Pastorelli R, Sebastiani F, Vendramin GG (2008) Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies (L.) Karst.). For Ecol Manage 255:3806–3812

    Google Scholar 

  • Skrøppa T (1982) Genetic variation in growth rhythm characteristic within and between natural populations of Norway spruce. A preliminary report. Silva Fennica 16:160–167

    Google Scholar 

  • Skrøppa T (1991) Within-population variation in autumn frost hardiness and its relationships to bud-set and height growth in Picea abies. Scand J For Res 6:353–363

    Google Scholar 

  • Skrøppa T (1993) Variation and inheritance in diallel crosses within natural populations of Norway spruce. In: Rhone V (ed) Norway spruce provenances and breeding. Proceedings of the IUFRO S2.2-11 symposium, Latvia, 1993, 240p

    Google Scholar 

  • Skrøppa T (1994) Impact of tree improvement on genetic structure and diversity of planted forests. Silvae Fennica 28(4):265–274

    Google Scholar 

  • Skrøppa T, Kohmann K, Johnsen Ø, Steffenrem A, Edvardsen ØM (2007) Field performance and early test results of offspring from two Norway spruce seed orchards containing clones transferred to warmer climates. Can J For Res 37:515–522

    Google Scholar 

  • Skrøppa T, Tollefsrud MM, Sperisen C, Johnsen Ø (2009) Rapid change in adaptive performance from one generation to the next in Picea abies – Central European trees in a Nordic environment. Tree Genet Genomes 6:93–99

    Google Scholar 

  • Şofletea N, Curtu N, Teodosiu M (2010) Evaluarea diversităţii genetice interpopulaţionale cu ajutorul markerilor genetici (Evaluation of interpopulation genetic diversity by the means of genetic markers). In: Mihai G (ed) Surse de seminţe testate pentru principalele specii de arbori forestieri din România (Tested seed sources for the main forest species in Romania), Editura Silvică, Bucureşti, pp 107–201

    Google Scholar 

  • Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263

    PubMed  CAS  Google Scholar 

  • Steffenrem A (2008) Genetic variation in structural wood quality traits in Norway spruce and implications for tree breeding. Norwegian University of Life Sciences, Ås, pp 50

    Google Scholar 

  • Steffenrem A, Kvaalen H, Høibø OA, Edvardsen ØM, Skrøppa T (2009) Genetic variation of wood quality traits and relationships with growth in Picea abies. Scand J For Res 24(1):15–27

    Google Scholar 

  • Swedjemark G, Karlsson B (2004) Genotypic variation in susceptibility following artificial Heterobasidion annosum inoculation of Picea abies clones in a 17-year-old field test. Scand J For Res 19:103–111

    Google Scholar 

  • Swedjemark G, Stenlid J, Karlsson B (1997) Genetic variation among clones of Picea abies in resistance to growth of Heterobasidion annosum. Silvae Genet 46:369–374

    Google Scholar 

  • Thomas BR, Lester DT (1992) An examination of regional, provenance and family variation in frost hardiness of Pinus monticola. Can J For Res 22:1917–1921

    Google Scholar 

  • Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skrøppa T, Cheddedi R, Van der Knaap WO, Latałowa M, Terhürne-Berson R, Litt T, Geburek T, Brochman C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150

    PubMed  CAS  Google Scholar 

  • Tollefsrud MM, Sønstebø JH, Brochmann C, Johnsen Ø, Skrøppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562

    PubMed  CAS  Google Scholar 

  • Tzschacksch O (1983) Immissionsresistente Fichten-Herkunftssorte – Immissionsresistente Fichten-Mehrklonsorte. Report of the Institute for Forestry, Eberswalde (not published)

    Google Scholar 

  • Ununger J, Ekberg I, Kang H (1988) Genetic control and age related changes of juvenile growth characteristics in Picea abies. Scand J For Res 3:55–56

    Google Scholar 

  • Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies (K.)). Genome 43(1):68–78

    PubMed  CAS  Google Scholar 

  • Wang X-R, Chhatre VE, Nilsson M-C, Song W, Zackrisson O, Szmidt A (2003) Island population structure of Norway spruce (Picea abies) in Northern Sweden. Int J Plant Sci 164(5):711–717

    Google Scholar 

  • Wellendorf H (1988) A Danish Norway spruce breeding plan from 1972 – a retrospective review 15 years later. IUFRO conference. Meeting of the Working Party S.2.02-11 Norway spruce provenances, breeding and genetic conservation, Tjörnarp, 1988, pp 279–316

    Google Scholar 

  • Wellendorf H, Skov E, Kjaer ED (1994) Suggested updating of improvement strategy for Danish-grown Norway spruce. Forest Tree Improvement, Arboretet, Hørsholm 25:1–12

    Google Scholar 

  • Wolf H (2001) Effects of extreme SO2-air pollution in winter 1995/96 on vitality and growth of SO2-tolerant Norway spruce (Picea abies [L.] KARST.) clones in the Ore mountains. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions, vol 70, Forestry sciences, pp 35–49

    Google Scholar 

Download references

Acknowledgments

Elodie Bay, Wladyslaw Chalupka, Josef Frydl, Ducci Fulvio, Matti Haapanen, Jon Kehlet Hansen, Berthold Heinze, Bo Karlsson, Dierk Kownatzki, Doris Krabel, Roman Longauer, Georgeta Mihai, Gheorghe Parnuta, Luc Pâques, Volker Schneck, Arne Steffenrem, Rob Sykes, David Thompson, Marin Tudoroiu and Sven de Vries are acknowledged for contributing data for the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Jansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jansson, G. et al. (2013). Norway Spruce (Picea abies (L.) H.Karst.). In: Pâques, L. (eds) Forest Tree Breeding in Europe. Managing Forest Ecosystems, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6146-9_3

Download citation

Publish with us

Policies and ethics