Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 195))

  • 2207 Accesses

Abstract

Cold worked and extruded materials always exhibit a measure of anisotropy, or “texture” where the mechanical properties exhibit directional properties. The rolling process used to create sheet metals orients the material grains and precipitates/inclusions in the rolling direction and thus induces anisotropy. Typically, bulk materials that exhibit texture effects are treated as orthotropic while sheet metals are commonly assumed to possess planar isotropy and normal anisotropy. To characterize the anisotropy of sheet materials, uniaxial tensile tests are performed with the samples fabricated from the material in different directions relative to the rolling direction. The R-value quantifies the measure of anisotropy and is defined as the ratio of the transverse strain to the through-thickness strain as shown in Fig. 3.1 and Eq. (3.1)

$$ R=\frac{{{\varepsilon_w}}}{{{\varepsilon_t}}} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aravas, N., & Ponte Castaneda, P. (2004). Numerical methods for porous metals with deformation-induced anisotropy. Computational Methods Applied Mechanical Engineering, 193, 3767–3805.

    Article  MATH  Google Scholar 

  • Barlat, F. (1987). Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Materials Science Engineering, 95, 15–29.

    Article  Google Scholar 

  • Barlat, F., & Lian, J. (1989). Plastic behavior and stretchability of sheet metals (Part I): A yield function for orthotropic sheet under plane stress conditions. International Journal of Plasticity, 5, 51–56.

    Article  Google Scholar 

  • Barlat, F., Lege, D. J., & Brem, J. C. (1991). A six-component yield function for anisotropic materials. International Journal of Plasticity, 7, 693.

    Article  Google Scholar 

  • Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., Lege, D. J., Matsui, K., Murtha, S. J., Hattori, S., Becker, R. C., & Makosey, S. (1997). Yield function development for aluminum alloy sheets. Journal of the Mechanics and Physics of Solids, 45, 1727–1763.

    Article  Google Scholar 

  • Bayoumi, S. E. A. (1999). Engineering solid mechanics: Fundamentals and applications, chapt. 7 (p. 306). Boca Raton: CRC Press.

    Google Scholar 

  • Benzerga, A. A., & Besson, J. (2001). Plastic potentials for anisotropic porous solids. European Journal of Mechanics A/Solids, 20, 397–434.

    Article  MATH  Google Scholar 

  • Benzerga, A. A., Besson, J., & Pineau, A. (2004). Anisotropic ductile fracture part II: Theory. Acta Materialia, 52, 4639–4650. 223.

    Article  Google Scholar 

  • Budiansky, B., Hutchinson, J. W., & Slutsky, S. (1981). Void growth and collapse in viscous solids. In H. G. Hopkins & M. J. Sewell (Eds.), Mechanics of solids, the rodney hill 60th anniversary volume (pp. 13–45). Oxford: Pergamon Press.

    Google Scholar 

  • Cazacu, O., & Barlat, F. (2003). Application of representation theory to describe yielding of anisotropic aluminum alloys. International Journal of Engineering Science, 41, 1367–1385.

    Article  Google Scholar 

  • Cazacu, O., & Stewart, J. B. (2009). Analytic plastic potential for porous aggregates with matrix exhibiting tension–compression asymmetry. Journal of the Mechanics and Physics of Solids, 57, 325–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Cazacu, O., Plunkett, B., & Barlat, F. (2006). Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity, 22, 1171–1194.

    Article  MATH  Google Scholar 

  • Chein, W., Pan, J., & Tang, S. (2001). Modified anisotropic Gurson yield criterion for porous ductile sheet metals. Journal of Engineering Materials and Technology, 132, 409–416.

    Article  Google Scholar 

  • Danas, K., & Aravas, N. (2012). Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations. Composites: Part B, 43(6), 2544–2559. doi:10.1016/j.compositesb.2011.12.011.

    Article  Google Scholar 

  • Danas, K., & Ponte Castaneda, P. (2009). A finite-strain model for anisotropic viscoplastic media: I – Theory. European Journal of Mechanics/A Solids, 28, 387–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Gologanu, M., Leblond, J. B., Perrin, P., & Devaux, J. (1997). Recent extensions of Gurson’s model for porous ductile metals. In P. Suquet (Ed.), Continuum micromechanics (pp. 61–130). New York: Springer.

    Google Scholar 

  • Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth – Part I. Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99, 2–15.

    Article  Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.

    Google Scholar 

  • Kachanov, L. M. (1974). Fundamentals of the theory of plasticity. Moscow: Mir Publishers.

    Google Scholar 

  • Kailasam, K., & Ponte Castaneda, P. (1998). A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. Journal of the Mechanics and Physics of Solids, 46, 427–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Keralavarma, S. M., & Benzerga, A. A. (2010). A constitutive model for plastically anisotropic solids with non-spherical voids. Journal of Mechanics and Physics of Solids, 58, 874–890.

    Article  MathSciNet  MATH  Google Scholar 

  • Landry, M., & Chen, Z. T. (2011). An approximate lower bound damage-based yield criterion for porous ductile sheet metals. Theoretical and Applied Fracture Mechanics, 55, 76–81.

    Article  Google Scholar 

  • Leblond, J., Perrin, G., & Devaux, J. (1994). Bifurcation effects in ductile metals with damage delocalization. Journal of Applied Mechanics, 61, 236–242.

    Article  MATH  Google Scholar 

  • Leblond, J. B., Perrin, G., & Devaux, J. (1995). An improved Gurson-type model for hardenable ductile metals. European Journal of Mechanics A/Solids, 14(4), 499–527.

    Google Scholar 

  • Liao, K. C., Pan, J., & Tang, S. C. (1997). Approximate yield criteria for anisotropic porous ductile sheet metals. Mechanics of Materials, 26, 213–226.

    Article  Google Scholar 

  • Monchiet, V., Cazacu, O., Charkaluk, E., & Kondo, D. (2008). Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. International Journal of Plasticity, 24, 1158–1189.

    Article  MATH  Google Scholar 

  • Pardoen, T., & Hutchinson, J. (2000). An extended model for void growth and coalescence. Journal of the Mechanics and Physics of Solids, 48, 2467–2512.

    Article  MATH  Google Scholar 

  • Qiu, Y. P., & Weng, G. J. (1993). Plastic potential and yield function of porous materials with aligned randomly oriented spheroidal voids. International Journal of Plasticity, 9, 271–290.

    Article  MATH  Google Scholar 

  • Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17, 201–217.

    Article  Google Scholar 

  • Shima, S., & Oyane, M. (1976). Plasticity theory for porous metals. International Journal of Mechanical Sciences, 18, 285–291.

    Article  Google Scholar 

  • Stewart, J. B., & Cazacu, O. (2011). Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. International Journal of Solids and Structures, 48, 357–373.

    Article  MATH  Google Scholar 

  • Sun, Y., & Wang, D. (1989). A lower bound approach to the yield loci of porous materials. Acta Mech Sinica, 5, 237–245.

    Article  Google Scholar 

  • Wang, D., & Pan, J. (2004). An anisotropic Gurson yield criterion for porous ductile sheet metals with planar anisotropy. International Journal of Damage Mechanics, 13, 7–33.

    Article  Google Scholar 

  • Xia, W. J., & Chen, Z. T. (2007). A quasi-exact yield criterion for anisotropic porous ductile sheet metals. Acta Mechanica, 191 (1-2), 93–108.

    Article  MATH  Google Scholar 

  • Yoon, J. H., Stewart, J. B., & Cazacu, O. (2011). Coupled elastic–plastic damage model for a porous aggregate with an incompressible matrix displaying tension–compression asymmetry. Engineering Fracture Mechanics, 78, 1407–1423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Z., Butcher, C. (2013). Anisotropy. In: Micromechanics Modelling of Ductile Fracture. Solid Mechanics and Its Applications, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6098-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6098-1_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6097-4

  • Online ISBN: 978-94-007-6098-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics