Skip to main content

Structural Bases for Tetraspanin Functions

  • Chapter
  • First Online:
Tetraspanins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

The tetraspanin transmembrane glycoproteins are considered as “molecular facilitators” which simultaneously interact with, and thereby bring into close proximity specific proteins involved in cellular activation and transduction processes. Elucidation of the 3D structure of tetraspanins is an essential step in understanding of their facilitator function and of the molecular basis of their partner specificity. Although there are currently no experimental atomic resolution structures of a whole tetraspanin molecule, recent information gained from three different approaches has led to a rather comprehensive picture of the structural organization of tetraspanins. These include: (1) crystallographic structures of the main extracellular domain of the ubiquitous tetraspanin CD81; (2) a 6 Å-resolution cryo-EM structure of the tetraspanins uroplakin UPIa and UPIb in the urothelial plaque of mammalian urothelium; (3) molecular modeled-structures of the complete CD81 tetraspanin. On the basis of such structural data, a qualitative view of tetraspanin structure-function relationship is emerging, including a delineation of regions of the molecule involved in specific interactions with partners, as well as an understanding of the structural basis of the multilevel partner specificity of tetraspanins and of the tetraspanin network organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUM:

Asymmetric unit membrane (AUM)

Cryo-EM:

Cryo-electron microscopy

EC1:

First tetraspanin extracellular region

EC2:

Second tetraspanin extracellular region

EM:

Electron microscopy

IC:

Intracellular

TEM:

Tetraspanin-enriched microdomain

TM:

Transmembrane

UP:

Uroplakin

UPEC:

Uropathogenic E. coli

UPIa:

Uroplakin Ia

UPIb:

Uroplakin Ib

UPII:

Uroplakin II

UPIIIa:

Uroplakin IIIa

UTI:

Urinary tract infection

References

  • Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ, Zhang XA (2009) Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 174:647–660

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277(40):36991–37000, Oct 4

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (1997a) Helix packing angle preferences. Nat Struct Biol 4:915–917

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (1997b) Helix packing in membrane proteins. J Mol Biol 272:780–789

    Article  PubMed  CAS  Google Scholar 

  • Brisson A, Wade RH (1983) Three-dimensional structure of luminal plasma membrane protein from urinary bladder. J Mol Biol 166:21–36

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem 276:14329–14337

    PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E (2003) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009a) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O (2009b) The Ig domain protein CD9P-1 down-regulates CD81 ability to support plasmodium yoelii infection. J Biol Chem 284:31572–31578

    Article  PubMed  CAS  Google Scholar 

  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893

    Article  PubMed  CAS  Google Scholar 

  • Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117:5269–5282

    Article  PubMed  CAS  Google Scholar 

  • Drummer HE, Wilson KA, Poumbourios P (2002) Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J Virol 76:11143–11147

    Article  PubMed  CAS  Google Scholar 

  • Drummer HE, Wilson KA, Poumbourios P (2005) Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. Biochem Biophys Res Commun 328:251–257

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142

    Google Scholar 

  • Eilers M, Patel AB, Liu W, Smith SO (2002) Comparison of helix interactions in membrane and soluble alpha-bundle proteins. Biophys J 82:2720–2736

    Article  PubMed  CAS  Google Scholar 

  • Gobel U, Sander C, Schneider R, Valencia A (1994) Correlated mutations and residue contacts in proteins. Proteins 18:309–317

    Article  PubMed  CAS  Google Scholar 

  • Hasuwa H, Shishido Y, Yamazaki A, Kobayashi T, Yu X, Mekada E (2001) CD9 amino acids critical for upregulation of diphtheria toxin binding. Biochem Biophys Res Commun 289:782–790

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM (1966) The permeability of rat transitional epithelium. Kertinization and the barrier to water. J Cell Biol 28:21–31

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM (1975) The mammalian urinary bladder: an accommodating organ. Biol Rev Camb Philos Soc 50:215–246

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM, Ketterer B (1969) Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature 224:1304–1305

    Article  PubMed  CAS  Google Scholar 

  • Higginbottom A, Takahashi Y, Bolling L, Coonrod SA, White JM, Partridge LJ, Monk PN (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311:208–214

    Article  PubMed  CAS  Google Scholar 

  • Hu CC, Bachmann T, Zhou G, Liang FX, Ghiso J, Kreibich G, Sun TT (2008) Assembly of a membrane receptor complex: roles of the uroplakin II prosequence in regulating uroplakin bacterial receptor oligomerization. Biochem J 414:195–203

    Article  PubMed  CAS  Google Scholar 

  • Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, Bill RM (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57:206–216

    Article  PubMed  CAS  Google Scholar 

  • Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77:1609–1618

    Article  PubMed  CAS  Google Scholar 

  • Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol 285:595–608

    Article  PubMed  CAS  Google Scholar 

  • Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18

    Article  PubMed  CAS  Google Scholar 

  • Koss LG (1969) The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest 21:154–168

    PubMed  CAS  Google Scholar 

  • Kovalenko OV, Metcalf DG, Degrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11

    Article  PubMed  Google Scholar 

  • Langosch D, Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150–159

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    Article  PubMed  CAS  Google Scholar 

  • Liang J (2002) Experimental and computational studies of determinants of membrane-protein folding. Curr Opin Chem Biol 6:878–884

    Article  PubMed  CAS  Google Scholar 

  • Liang FX, Riedel I, Deng FM, Zhou G, Xu C, Wu XR, Kong XP, Moll R, Sun TT (2001) Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355:13–18

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Eilers M, Patel AB, Smith SO (2004) Helix packing moments reveal diversity and conservation in membrane protein structure. J Mol Biol 337:713–729

    Article  PubMed  CAS  Google Scholar 

  • Lomize AL, Pogozheva ID, Mosberg HI (1999) Structural organization of G-protein-coupled receptors. J Comput Aided Mol Des 13:325–353

    Article  PubMed  CAS  Google Scholar 

  • Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382

    PubMed  CAS  Google Scholar 

  • Mahbub Hasan AK, Sato K, Sakakibara K, Ou Z, Iwasaki T, Ueda Y, Fukami Y (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 286:483–492

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Roth DM, Jans DA, Pouton CW, Partridge LJ, Monk PN, Moseley GW (2005) Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 79:10839–10851

    Article  PubMed  CAS  Google Scholar 

  • Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun TT, Aebi U, Kong XP (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317:697–706

    Article  PubMed  CAS  Google Scholar 

  • Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116:4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271:F886–F894

    PubMed  CAS  Google Scholar 

  • Oostergetel GT, Keegstra W, Brisson A (2001) Structure of the major membrane protein complex from urinary bladder epithelial cells by cryo-electron crystallography. J Mol Biol 314:245–252

    Article  PubMed  CAS  Google Scholar 

  • Schneider D (2004) Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers. FEBS Lett 577:5–8

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor cd81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Warren RC (1978) Analysis of membrane structure in the transitional epithelium of rat urinary bladder. 1. The luminal membrane. J Ultrastruct Res 64:124–140

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Chlapowski FJ, Bonneville MA (1972) Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol 53:73–91

    Article  PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112

    Article  PubMed  CAS  Google Scholar 

  • Takayama H, Chelikani P, Reeves PJ, Zhang S, Khorana HG (2008) High-level expression, single-step immunoaffinity purification and characterization of human tetraspanin membrane protein CD81. PLoS One 3:e2314

    Article  PubMed  Google Scholar 

  • Taylor KA, Robertson JD (1984) Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res 87:23–30

    Article  PubMed  CAS  Google Scholar 

  • Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415

    Article  PubMed  Google Scholar 

  • Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14

    Article  PubMed  CAS  Google Scholar 

  • Vergara J, Longley W, Robertson JD (1969) A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol 46:593–596

    Article  PubMed  CAS  Google Scholar 

  • Vos WL, Vaughan S, Lall PY, McCaffrey JG, Wysocka-Kapcinska M, Findlay JB (2010) Expression and structural characterization of peripherin/RDS, a membrane protein implicated in photoreceptor outer segment morphology. Eur Biophys J 39:679–688

    Article  PubMed  CAS  Google Scholar 

  • Walshaw J, Woolfson DN (2001) Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J Mol Biol 307:1427–1450

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Haner M, Wu XR, Henn C, Engel A, Sun TT, Aebi U (1995) Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol 248:887–900

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liang FX, Kong XP (2008) Characteristics of the phagocytic cup induced by uropathogenic Escherichia coli. J Histochem Cytochem 56:597–604

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Min G, Glockshuber R, Sun TT, Kong XP (2009) Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 392(2):352–361

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA (2009) CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 23:3273–3288

    Article  PubMed  CAS  Google Scholar 

  • Yalaoui S, Zougbede S, Charrin S, Silvie O, Arduise C, Farhati K, Boucheix C, Mazier D, Rubinstein E, Froissard P (2008) Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain. PLoS Pathog 4:e100

    Article  Google Scholar 

  • Yamada M, Tamura Y, Sanzen N, Sato-Nishiuchi R, Hasegawa H, Ashman LK, Rubinstein E, Yáñez-Mó M, Sánchez-Madrid F, Sekiguchi K (2008) Probing the interaction of tetraspanin CD151 with integrin alpha 3 beta 1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin alpha 3 beta 1 complex. Biochem J 415(3):417–427

    Article  PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446

    Article  PubMed  CAS  Google Scholar 

  • Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276:25005–25013

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work done in the authors’ laboratories was supported by grants from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, SIDACTION, the Association National pour la Recherche Contre le SIDA (to HC and MS) and NIH grant DK52206 (to HTZ and XPK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Seigneuret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seigneuret, M., Conjeaud, H., Zhang, HT., Kong, XP. (2013). Structural Bases for Tetraspanin Functions. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_1

Download citation

Publish with us

Policies and ethics