Skip to main content

Aerobic Solid-State Fermentation

  • Chapter
  • First Online:
Modern Solid State Fermentation

Abstract

Based on the nature of biological processes, aerobic solid fermentation can be defined as a biological metabolic process that uses air containing oxygen as the continuous phase. In the natural environment, the majority of microorganisms live under aerobic conditions, so aerobic solid fermentation simulates the natural environmental condition, and it may be more suitable for the growth of microorganisms. Current model simulations of different fermentation technologies describe the fermentation transfer principle. Various bioreactors have been designed, investigated, and scaled up. The large-scale industrial application of aerobic solid-state fermentation concludes the production of antibiotics, organic acids, enzymes, biofeeds, biopesticides, edible fungi, and so on. In this chapter, the physical and biological characteristics of aerobic solid fermentation are introduced; the related fermentation technologies and bioreactors are described and discussed, especially gas double dynamic solid-state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashley VM, Mitchell DA, Howes T. Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors. Biochem Eng J. 1999;3:141–50.

    Article  CAS  Google Scholar 

  • Astoreca A, Vaamonde G, Dalcero A, Ramos AJ, Marín S. Modelling the effect of temperature and water activity of Aspergillus flavus isolates from corn. Int J Food Microbiol. 2012;156:60–7.

    Article  PubMed  CAS  Google Scholar 

  • Bader J, Mast-Gerlach E, Popović M, Bajpai R, Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol. 2010;109:371–87.

    Article  PubMed  CAS  Google Scholar 

  • Baños JG, Tomasini A, Szakács G, Barrios-González J. High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng. 2009;108:105–10.

    Article  PubMed  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 2010;45:120–8.

    Article  CAS  Google Scholar 

  • Carol AJ, Kelly DP. Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: influence of product and substrate inhibition. J Chem Technol Biotechnol. 2008;33:241–61.

    Article  Google Scholar 

  • Cha JR, Chen JY. Transfer process principle. Beijing: Metallurgical Industry Press; 1997.

    Google Scholar 

  • Chen HZ, He Q. Value-added bioconversion of biomass by solid-state fermentation. J Chem Technol Biotechnol. 2012. doi:10.1002/jctb.3901.

  • Chen HZ, Li HQ. Respiratory solid-state fermentation method and fermentor. Chinese Patent CN201110107956.8; 2011

    Google Scholar 

  • Chen HZ, Xu J. Modern solid state fermentation: theory and practice. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  • Chen HZ, Xu J, Li ZH. Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation. Appl Biochem Microbiol. 2007;43:57–60.

    Article  Google Scholar 

  • Costa JAV, Alegre RM, Hasan SDM. Packing density and thermal conductivity determination for rice bran solid-state fermentation. Biotechnol Tech. 1998;12:747–50.

    Article  CAS  Google Scholar 

  • Foong C, Janaun J, Krishnaiah K, Prabhakar A. Effect of superficial air velocity on solid state fermentation of palm kernel cake in a lab scale fermenter using locally isolated fungal strain. Ind Crops Prod. 2009;30:114–8.

    Article  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet. 2001;35:439–68.

    Article  PubMed  CAS  Google Scholar 

  • Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J. 2003;13:85–101.

    Article  CAS  Google Scholar 

  • Godoy MG, Gutarra MLE, Castro AM, Machado OLT, Freire DMG. Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J Ind Microbiol Biotechnol. 2011;38:945–53.

    Article  PubMed  CAS  Google Scholar 

  • Gowthaman MK, Ghildyal NP, Rao K, Karanth NG. Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors—the effect of gaseous concentration gradients. J Chem Technol Biotechnol. 1993;56:233–9.

    Article  PubMed  CAS  Google Scholar 

  • Hardin MT, Mitchell DA, Howes T. Approach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors. Biotechnol Bioeng. 2000;67:274–82.

    Article  PubMed  CAS  Google Scholar 

  • Hashemi M, Mousavi S, Razavi S, Shojaosadati S. Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochem Eng J. 2011;53:159–64.

    Article  CAS  Google Scholar 

  • He Q, Chen HZ. Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol. 2002. doi:10.1007/s11947-012-0956-9.

  • Hu WF, Xu GR. Solid-state fermentation principle, devices and applications. Beijing: Chemical Industry Press; 2009.

    Google Scholar 

  • Hu KJ, Wu K, Pan RR, Liu B, Cai JM. Solid-state mixed fermentation increases activities of xylanase and cellulase. Chin J Mycosyst. 2007;26:273–8.

    CAS  Google Scholar 

  • Kalogeris E, Fountoukides G, Kekos D, Macris BJ. Design of a solid-state bioreactor for thermophilic microorganisms. Bioresour Technol. 1999;67:313–5.

    Article  CAS  Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol. 2003;86:207–13.

    Article  PubMed  CAS  Google Scholar 

  • Li ZH, Chen HZ. A peristaltic cycle aerobic solid state fermentation reactor using stimulate as power source. Chinese Patent CN201010113685.2; 2010

    Google Scholar 

  • Membrillo I, Sánchez C, Meneses M, Favela E, Loera O. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. Bioresour Technol. 2011;102(2):1581–6.

    Article  PubMed  CAS  Google Scholar 

  • Minjares-Carranco A, Trejo-Aguilar BA, Aguilar G, Viniegra-González G. Physiological comparison between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation. Enzyme Microb Technol. 1997;21:25–31.

    Article  CAS  Google Scholar 

  • Mitchell DA. The potential for establishment of axial temperature profiles during solid-state fermentation in rotating drum bioreactors. Biotechnol Bioeng. 2002;80:114–22.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, von Meien OF. Mathematical modeling as a tool to investigate the design and operation of the Zymotis packed-bed bioreactor for solid-state fermentation. Biotechnol Bioeng. 2000;68:127–35.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N. Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem Eng J. 2003;13:137–47.

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Berovic M. Solid-state fermentation bioreactors: fundamentals of design and operation. New York: Springer; 2006.

    Book  Google Scholar 

  • Nguyen TT, Ngo HH, Guo W, Phuntsho S, Li J. A new sponge tray bioreactor in primary treated sewage effluent treatment. Bioresour Technol. 2011;102:5444–7.

    Article  PubMed  CAS  Google Scholar 

  • Oostra J, Le Comte E, Van den Heuvel J, Tramper J, Rinzema A. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng. 2001;75(1):13–24.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan S, Modak JM. Heat and mass transfer simulation studies for solid-state fermentation processes. Chem Eng Sci. 1994;49:2187–93.

    Article  CAS  Google Scholar 

  • Rajagopalan S, Modak JM. Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Bioprocess Biosyst Eng. 1995;13:161–9.

    Article  CAS  Google Scholar 

  • Richard TL, Walker LP, Gossett JM. Effects of oxygen on aerobic solid-state biodegradation kinetics. Biotechnol Prog. 2010;22:60–9.

    Article  Google Scholar 

  • Roussos S, Raimbault M, Prebois JP, Lonsane BK. Zymotis, a large-scale solid-state fermenter—design and evaluation. Appl Biochem Biotechnol. 1993;42:37–52.

    Article  CAS  Google Scholar 

  • Salehizadeh H, Van Loosdrecht M. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv. 2004;22:261–79.

    Article  PubMed  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Research advances on Bacillus thuringiensis. Plant Biotechnol J. 2011;9:283–300.

    Article  PubMed  CAS  Google Scholar 

  • Sangsurasak P, Mitchell DA. Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol Bioeng. 1998;60:739–49.

    Article  PubMed  CAS  Google Scholar 

  • Sangsurasak P, Mitchell DA. Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol Bioeng. 2000;60:739–49.

    Article  Google Scholar 

  • Schutyser MAI, Weber FJ, Briels WJ, Boom RM, Rinzema A. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation. Biotechnol Bioeng. 2002;79:284–94.

    Article  PubMed  CAS  Google Scholar 

  • Selinheimo E, Kruus K, Buchert J, Hopia A, Autio K. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci. 2006;43:152–9.

    Article  CAS  Google Scholar 

  • Sella SRBR, Guizelini BP, Vandenberghe LPS, Medeiros ABP, Soccol CR. Lab-scale production of Bacillus atrophaeus’ spores by solid state fermentation in different types of bioreactors. Braz Arch Biol Technol. 2009;52:159–70.

    Article  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR, Pandey A. Recent advances in solid-state fermentation. Biochem Eng J. 2009;44:13–8.

    Article  CAS  Google Scholar 

  • Smits JP, van Sonsbeek HM, Tramper J, Knol W, Geelhoed W, Peeters M, et al. Modelling fungal solid-state fermentation: the role of inactivation kinetics. Bioprocess Biosyst Eng. 1999;20:391–404.

    Article  CAS  Google Scholar 

  • Stuart DM. Solid-state fermentation in rotating drum bioreactors: operating variables affect performance through their effects on transport phenomena. Biotechnol Bioeng. 2000;63:383–91.

    Article  Google Scholar 

  • Takamine J. Enzymes of Aspergillus oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind Eng Chem Res. 1914; 6:824–8.

    Google Scholar 

  • van den Doel LR, Mohoric A, Vergeldt FJ, van Duynhoven J, Blonk H, van Dalen G, et al. Mathematical modeling of water uptake through diffusion in 3D inhomogeneous swelling substrates. AIChE J. 2009;55:1834–48.

    Article  Google Scholar 

  • Vaziri BM, Fanael MA. Temperature control in packed-bed solid-state bioreactors. In: Paper presented at 5th international chemical engineering congress and exhibition; 2008 Jan 2–5; Kish Island; 2008.

    Google Scholar 

  • Weber FJ, Tramper J, Rinzema A. A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnol Bioeng. 1999;65:447–58.

    Article  PubMed  CAS  Google Scholar 

  • Weber FJ, Oostra J, Tramper J, Rinzema A. Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnol Bioeng. 2002;77:381–93.

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Han CP. Cereal science and biotechnology. Beijing: Chemical Industry Press; 2012.

    Google Scholar 

  • Yu B, Chen HZ. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol. 2010;101:9114–9.

    Article  Google Scholar 

  • Zhou DQ. Text book of microbiology. Beijing: Higher Education Press; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2013). Aerobic Solid-State Fermentation. In: Modern Solid State Fermentation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6043-1_4

Download citation

Publish with us

Policies and ethics