Skip to main content

FtsH Protease-Mediated Regulation of Various Cellular Functions

  • Chapter
  • First Online:
Regulated Proteolysis in Microorganisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 66))

Abstract

FtsH, a member of the AAA (ATPases associated with a variety of cellular activities) family of proteins, is an ATP-dependent protease of ∼71 kDa anchored to the inner membrane. It plays crucial roles in a variety of cellular processes. It is responsible for the degradation of both membrane and cytoplasmic substrate proteins. Substrate proteins are unfolded and translocated through the central pore of the ATPase domain into the proteolytic chamber, where the polypeptide chains are processively degraded into short peptides. FtsH is not only involved in the proteolytic elimination of unnecessary proteins, but also in the proteolytic regulation of a number of cellular functions. Its role in proteolytic regulation is achieved by one of two approaches, either the cellular levels of a regulatory protein are controlled by processive degradation of the entire protein, or the activity of a particular substrate protein is modified by processing. In the latter case, protein processing requires the presence of a stable domain within the substrate. Since FtsH does not have a robust unfolding activity, this stable domain is sufficient to abort processive degradation of the protein – resulting in release of a stable protein fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bieniossek C, Niederhauser B, Baumann UM (2009) The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc Natl Acad Sci U S A 106(51):21579–21584

    Article  PubMed  CAS  Google Scholar 

  2. Krzywda S, Brzozowski AM, Verma C, Karata K (2002) The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Structure 10(8):1073–1083

    Article  PubMed  CAS  Google Scholar 

  3. Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823(1):40–48

    Article  PubMed  CAS  Google Scholar 

  4. Ogura T, Okuno T, Suno R, Akiyama Y (2013) FtsH protease. In: Rawlings ND, Salvesen G (eds) Handbook of Proteolytic Enzymes, 3rd edn. Elsevier, pp 685–692

    Google Scholar 

  5. Okuno T, Ogura T (2008) FtsH protease, a eubacterial membrane-bound AAA protease. In: Kutejova E (ed) ATP-Dependent Proteases, Research Signport, pp 87–114

    Google Scholar 

  6. Suno R, Niwa H, Tsuchiya D, Zhang X et al (2006) Structure of the whole cytosolic region of ATP-dependent protease FtsH. Mol Cell 22(5):575–585

    Article  PubMed  CAS  Google Scholar 

  7. Asahara Y, Atsuta K, Motohashi K, Taguchi H et al (2000) FtsH recognizes proteins with unfolded structure and hydrolyzes the carboxyl side of hydrophobic residues. J Biochem 127(5):931–937

    Article  PubMed  CAS  Google Scholar 

  8. Gerdes F, Tatsuta T, Langer T (2012) Mitochondrial AAA proteases – towards a molecular understanding of membrane-bound proteolytic machines. Biochim Biophys Acta 1823(1):49–55

    Article  PubMed  CAS  Google Scholar 

  9. Nixon PJ, Michoux F, Yu J, Boehm M et al (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106(1):1–16

    Article  PubMed  CAS  Google Scholar 

  10. Rugarli EI, Langer T (2006) Translating m-AAA protease function in mitochondria to hereditary spastic paraplegia. Trends Mol Med 12(6):262–269

    Article  PubMed  CAS  Google Scholar 

  11. Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  PubMed  CAS  Google Scholar 

  12. Herman C, Thevenet D, D’Ari R, Bouloc P (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92(8):3516–3520

    Article  PubMed  CAS  Google Scholar 

  13. Tomoyasu T, Gamer J, Bukau B, Kanemori M et al (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J 14(11):2551–2560

    PubMed  CAS  Google Scholar 

  14. Obrist M, Langklotz S, Milek S, Fuhrer F et al (2009) Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiol Lett 290(2):199–208

    Article  PubMed  CAS  Google Scholar 

  15. Obrist M, Milek S, Klauck E, Hengge R (2007) Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology 153(8):2560–2571

    Article  PubMed  CAS  Google Scholar 

  16. Obrist M, Narberhaus F (2005) Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. J Bacteriol 187(11):3807–3813

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S et al (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32(3):347–358

    Article  PubMed  CAS  Google Scholar 

  18. Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K et al (2004) Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J Struct Biol 146(1–2):148–154

    Article  PubMed  CAS  Google Scholar 

  19. Karzai AW, Roche ED, Sauer RT (2000) The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7(6):449–455

    Article  PubMed  CAS  Google Scholar 

  20. Lies M, Maurizi MR (2008) Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli. J Biol Chem 283(34):22918–22929

    Article  PubMed  CAS  Google Scholar 

  21. Gur E, Ottofuelling R, Dougan DA (2013) Machines of destruction – AAA+ proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3–33

    Google Scholar 

  22. Herman C, Thevenet D, Bouloc P, Walker GC et al (1998) Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev 12(9):1348–1355

    Article  PubMed  CAS  Google Scholar 

  23. Akiyama Y, Kihara A, Ito K (1996) Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett 399(1–2):26–28

    Article  PubMed  CAS  Google Scholar 

  24. Akiyama Y, Kihara A, Tokuda H, Ito K (1996) FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins. J Biol Chem 271(49):31196–31201

    Article  PubMed  CAS  Google Scholar 

  25. van Stelten J, Silva F, Belin D, Silhavy TJ (2009) Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325(5941):753–756

    Article  PubMed  Google Scholar 

  26. Chiba S, Akiyama Y, Ito K (2002) Membrane protein degradation by FtsH can be initiated from either end. J Bacteriol 184(17):4775–4782

    Article  PubMed  CAS  Google Scholar 

  27. Chiba S, Akiyama Y, Mori H, Matsuo E et al (2000) Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep 1(1):47–52

    Article  PubMed  CAS  Google Scholar 

  28. Kihara A, Akiyama Y, Ito K (1999) Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J 18(11):2970–2981

    Article  PubMed  CAS  Google Scholar 

  29. Shimohata N, Chiba S, Saikawa N, Ito K et al (2002) The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 7(7):653–662

    Article  PubMed  CAS  Google Scholar 

  30. Akiyama Y (2009) Quality control of cytoplasmic membrane proteins in Escherichia coli. J Biochem 146(4):449–454

    Article  PubMed  CAS  Google Scholar 

  31. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329

    Article  PubMed  CAS  Google Scholar 

  32. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6(3):222–233

    Article  PubMed  Google Scholar 

  33. Anderson MS, Bull HG, Galloway SM, Kelly TM et al (1993) UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J Biol Chem 268(26):19858–19865

    PubMed  CAS  Google Scholar 

  34. Santos D, De Almeida DF (1975) Isolation and characterization of a new temperature-sensitive cell division mutant of Escherichia coli K-12. J Bacteriol 124(3):1502–1507

    PubMed  CAS  Google Scholar 

  35. Begg KJ, Tomoyasu T, Donachie WD, Khattar M et al (1992) Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations. J Bacteriol 174(7):2416–2417

    PubMed  CAS  Google Scholar 

  36. Qu JN, Makino SI, Adachi H, Koyama Y et al (1996) The tolZ gene of Escherichia coli is identified as the ftsH gene. J Bacteriol 178(12):3457–3461

    PubMed  CAS  Google Scholar 

  37. Ogura T, Inoue K, Tatsuta T, Suzaki T et al (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31(3):833–844

    Article  PubMed  CAS  Google Scholar 

  38. Fuhrer F, Langklotz S, Narberhaus F (2006) The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59(3):1025–1036

    Article  PubMed  Google Scholar 

  39. Fuhrer F, Muller A, Baumann H, Langklotz S et al (2007) Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease. J Mol Biol 372(2):485–496

    Article  PubMed  Google Scholar 

  40. Langklotz S, Schakermann M, Narberhaus F (2011) Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all gram-negative bacteria. J Bacteriol 193(5):1090–1097

    Article  PubMed  CAS  Google Scholar 

  41. Katz C, Ron EZ (2008) Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190(21):7117–7122

    Article  PubMed  CAS  Google Scholar 

  42. Pierson TM, Adams D, Bonn F, Martinelli P et al (2011) Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 7(10):e1002325

    Article  PubMed  CAS  Google Scholar 

  43. Tamura Y, Endo T, Iijima M, Sesaki H (2009) Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J Cell Biol 185(6):1029–1045

    Article  PubMed  CAS  Google Scholar 

  44. Potting C, Wilmes C, Engmann T, Osman C et al (2010) Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29(17):2888–2898

    Article  PubMed  CAS  Google Scholar 

  45. Osman C, Haag M, Potting C, Rodenfels J et al (2009) The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol 184(4):583–596

    Article  PubMed  CAS  Google Scholar 

  46. Tamura Y, Iijima M, Sesaki H (2010) Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J 29(17):2875–2887

    Article  PubMed  CAS  Google Scholar 

  47. Herman C, Prakash S, Lu CZ, Matouschek A et al (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol Cell 11(3):659–669

    Article  PubMed  CAS  Google Scholar 

  48. Koodathingal P, Jaffe NE, Kraut DA, Prakash S et al (2009) ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J Biol Chem 284(28):18674–18684

    Article  PubMed  CAS  Google Scholar 

  49. Cascales E, Buchanan SK, Duche D, Kleanthous C et al (2007) Colicin biology. Microbiol Mol Biol Rev 71(1):158–229

    Article  PubMed  CAS  Google Scholar 

  50. Kleanthous C (2010) Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat Rev Microbiol 8(12):843–848

    Article  PubMed  CAS  Google Scholar 

  51. Walker D, Mosbahi K, Vankemmelbeke M, James R et al (2007) The role of electrostatics in colicin nuclease domain translocation into bacterial cells. J Biol Chem 282(43):31389–31397

    Article  PubMed  CAS  Google Scholar 

  52. Chauleau M, Mora L, Serba J, de Zamaroczy M (2011) FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm. J Biol Chem 286(33):29397–29407

    Article  PubMed  CAS  Google Scholar 

  53. Akiyama Y (1999) Self-processing of FtsH and its implication for the cleavage specificity of this protease. Biochemistry 38(36):11693–11699

    Article  PubMed  CAS  Google Scholar 

  54. Voos W, Ward LA, Truscott KN (2013) The role of AAA+ proteases in mitochondrial protein biogensis, homeostasis and activity control. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:223–263

    Google Scholar 

  55. Okuno T, Yamanaka K, Ogura T (2006) An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin. Genes Cells 11(3):261–268

    Article  PubMed  CAS  Google Scholar 

  56. Ayuso-Tejedor S, Nishikori S, Okuno T, Ogura T et al (2010) FtsH cleavage of non-native conformations of proteins. J Struct Biol 171(2):117–124

    Article  PubMed  CAS  Google Scholar 

  57. Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42(3):221–242

    Article  PubMed  CAS  Google Scholar 

  58. Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797(1):1–10

    Article  PubMed  CAS  Google Scholar 

  59. Bonn F, Tatsuta T, Petrungaro C, Riemer J et al (2011) Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 30(13):2545–2556

    Article  PubMed  CAS  Google Scholar 

  60. Koppen M, Bonn F, Ehses S, Langer T (2009) Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol Biol Cell 20(19):4216–4224

    Article  PubMed  CAS  Google Scholar 

  61. Di Bella D, Lazzaro F, Brusco A, Plumari M et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42(4):313–321

    Article  PubMed  Google Scholar 

  62. Casari G, De Fusco M, Ciarmatori S, Zeviani M et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93(6):973–983

    Article  PubMed  CAS  Google Scholar 

  63. Tatsuta T, Augustin S, Nolden M, Friedrichs B (2007) m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 26(2):325–335

    Article  PubMed  CAS  Google Scholar 

  64. Ehses S, Raschke I, Mancuso G, Bernacchia A et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7):1023–1036

    Article  PubMed  CAS  Google Scholar 

  65. Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25(13):2966–2977

    Article  PubMed  CAS  Google Scholar 

  66. Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a98

    Article  Google Scholar 

  67. McDougald D, Rice SA, Barraud N, Steinberg PD et al (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10(1):39–50

    CAS  Google Scholar 

  68. Bove P, Capozzi V, Garofalo C, Rieu A et al (2012) Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiol Res 167(4):187–193

    Article  PubMed  CAS  Google Scholar 

  69. Simionato MR, Tucker CM, Kuboniwa M, Lamont G et al (2006) Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun 74(11):6419–6428

    Article  PubMed  CAS  Google Scholar 

  70. Herman C, Ogura T, Tomoyasu T, Hiraga S et al (1993) Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc Natl Acad Sci U S A 90(22):10861–10865

    Article  PubMed  CAS  Google Scholar 

  71. Herman C, Thevenet D, D’Ari R, Bouloc P (1997) The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J Bacteriol 179(2):358–363

    PubMed  CAS  Google Scholar 

  72. Kobiler O, Rokney A, Oppenheim AB (2007) Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. PLoS One 2(4):e363

    Article  PubMed  Google Scholar 

  73. Saikawa N, Akiyama Y, Ito K (2004) FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J Struct Biol 146(1–2):123–129

    Article  PubMed  CAS  Google Scholar 

  74. Bandyopadhyay K, Parua PK, Datta AB, Parrack P (2010) Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro. Arch Biochem Biophys 501(2):239–243

    Article  PubMed  CAS  Google Scholar 

  75. Kihara A, Akiyama Y, Ito K (1997) Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Proc Natl Acad Sci U S A 94(11):5544–5549

    Article  PubMed  CAS  Google Scholar 

  76. Kihara A, Akiyama Y, Ito K (1998) Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. J Mol Biol 279(1):175–188

    Article  PubMed  CAS  Google Scholar 

  77. Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metab 20(8):394–401

    Article  PubMed  CAS  Google Scholar 

  78. Merkwirth C, Langer T (2009) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793(1):27–32

    Article  PubMed  CAS  Google Scholar 

  79. Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122(Pt 21):3823–3830

    Article  PubMed  CAS  Google Scholar 

  80. Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W et al (2010) Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J Biol Chem 285(17):12512–12521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Yoshinori Akiyama for stimulating discussion and invaluable comments and to David Dougan for generous editorial suggestions to the manuscript. We also thank to Chiyome Ichinose for secretarial assistant. This work was supported in part by grants from the Ministry of Education, Culture, Science, Sports and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teru Ogura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Okuno, T., Ogura, T. (2013). FtsH Protease-Mediated Regulation of Various Cellular Functions. In: Dougan, D. (eds) Regulated Proteolysis in Microorganisms. Subcellular Biochemistry, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5940-4_3

Download citation

Publish with us

Policies and ethics