Skip to main content

Polyphasic Identification and Preservation of Fungal Diversity: Concepts and Applications

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Fungi are a diverse group of unique eukaryotic organisms currently accepted as the Eumycota kingdom. The (under) estimated number of fungal species is 1.5 × 106 of which only a small number have been identified (ca. 8–10%). They are ubiquitous in nature with an extraordinary ability to decompose plant wastes while also causing much spoilage of food and other relevant commodities. Certain species are used directly as food and others in the manufacture of foodstuffs, antibiotics, enzymes, organic acids and alcohol. Still others can infect humans, animals and crops. Information about each microorganism (e.g. morphological and molecular descriptions, including modern spectral data – MALDI-TOF MS, physiological and biochemical features, ecological roles, and societal risks or benefits) is the key element in fungal identification. In order to attain a sound fungal identification a polyphasic approach is required. It is achieved through the integration of all biological traits data. Fungal service culture collections have well established management systems and preservation techniques that are of elemental importance and guarantee the proper identification and characterisation of environmental fungal isolates. They also assure the continuity of taxonomic and comparative studies and fungal availability for biotechnological exploitation. To foster bio-economy and sustain the biotechnological developments new demands for quality control of fungal holdings preserved in culture collections are in course. The quality control system is associated with new guidelines for the culture collections to operate at global level and to adapt the traditional fungal repositories into the new OECD concept of Biological Resource Centres (BRCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson D, Lombaert G, Clear RM, Sholberg P, Trelka R, Rosin E (2009) Production of patulin and citrinin by Penicillium expansum from British Columbia (Canada) apples. Mycotoxin Res 25:85–88

    Article  CAS  PubMed  Google Scholar 

  • Baird R (2010) Leveraging the fullest potential of scientific collections through digitization. Biodivers Inform 7:130–136

    Google Scholar 

  • Baker M, Jeffries P (2006) Use of commercially available cryogenic vials for long-term preservation of dermatophyte fungi. J Clin Microbiol 44:617–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass D, Richards TA (2011) Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biol Rev 25:159–164

    Article  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Branco S (2011) Fungal diversity – an overview. In: Venora G, Grillo O (eds) The dynamical processes of biodiversity – case studies of evolution and spatial distribution. InTech, Rijeka, pp 211–226

    Google Scholar 

  • Cabañes FJ, Bragulat MR, Castellá G (2010) Ochratoxin a producing species in the genus Penicillium. Toxins 2:1111–1120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cain TC, Lubman DM, Webber WJ Jr (1994) Differentiation of bacteria using protein profiles from MALDI-TOF-MS. Rapid Commun Mass Spectrom 8:1026–1030

    Article  CAS  Google Scholar 

  • Canhos VP, Souza S, Giovanni R, Canhos D (2004) Global biodiversity informatics: setting the scene for a “new world” of ecological modeling. Biodivers Inform 1:1–13

    Google Scholar 

  • Cannon PF (1997) Diversity of the Phyllachoraceae with special reference to the tropics. In: Hyde KD (ed) Biodiversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 255–278

    Google Scholar 

  • Capriles CH, Mata S, Middelveen M (1989) Preservation of fungi in water (Castellani): 20 years. Mycopathogia 106:73–79

    Article  Google Scholar 

  • Castellani A (1967) Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further researches. J Trop Med Hyg 70:181–184

    Google Scholar 

  • Convention on Biological Diversity, United Nations (2011) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological biodiversity – text and annex. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    Google Scholar 

  • Dias N, Santos C, Portela M, Lima N (2011) Toenail onychomycosis in a Portuguese geriatric population. Mycopathologia 172:55–61

    Article  CAS  PubMed  Google Scholar 

  • Frezal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 8:727–736

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC (1989) The use of high-performance liquid chromatography and diode array detection in fungal chemotaxonomy based on profiles of secondary metabolites. Botanical J Linnean Soc 99:81–95

    Article  Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    Article  Google Scholar 

  • Fry RM, Greaves RIN (1951) The survival of bacteria during and after drying. J Hyg 49:220–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gams W, Christensen M, Onions AH, Pitt JI, Samson RA (1985) Infrageneric taxa of Aspergillus. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus systematics. Plenum Press, New York, pp 55–62

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Giorni P, Magan N, Pietri A, Bertuzzi T, Battilani P (2007) Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol 113:330–338

    Article  CAS  PubMed  Google Scholar 

  • Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Grivell AR, Jackson JF (1969) Microbial culture preservation with silica gel. J Gen Microbiol 58:423–425

    Article  CAS  PubMed  Google Scholar 

  • Hammond PM (1992) Species inventory. In: Groombridge B (ed) Global biodiversity: status of the Earth’s living resources. Chapman and Hall, London, pp 17–39

    Chapter  Google Scholar 

  • Hammond PM (1995) The current magnitude of biodiversity. In: Heywood VH (ed) Global biodiversity assessment. Cambridge University Press, Cambridge, pp 113–138

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth DL (2011a) Naming Aspergillus species: progress towards one name for each species. Med Mycol 49:70–76

    Article  Google Scholar 

  • Hawksworth DL (2011b) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162

    Article  PubMed Central  PubMed  Google Scholar 

  • Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  CAS  PubMed  Google Scholar 

  • Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hillenkamp F, Peter-Katalinic J (eds) (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Wiley-VCH, Münster

    Google Scholar 

  • Holland RD, Wilkes JG, Ralli F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO Jr (1996) Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth ML, Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457

    Article  CAS  PubMed  Google Scholar 

  • Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329

    Article  CAS  PubMed  Google Scholar 

  • IPAC (2010) Guia para a aplicação da NP EN ISO/IEC 17025. http://www.ipac.pt/docs/publicdocs/regras/OGC001.pdf. Cited 01 Jun 2012

  • Jahn TL, Jahn FF (1949) How to know the protozoa. Wm C Brown, Dubuque

    Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Keys CJ, Dare DJ, Sutton H, Wells G, Lunt M, McKenna T, McDowall M, Shah HN (2004) Infection. Genet Evol 4:221–242

    Article  CAS  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. CBS, Utrecht

    Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–693

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie R, Burhenne-Guilmin F, La Viña AGM, Werksman JD, Ascencio A, Kinderlerer J, Kummer K, Tapper R (2003) An explanatory guide to the Cartagena protocol on biosafety. IUCN, Gland/Cambridge, p xvi + 295 pp

    Book  Google Scholar 

  • Martins MAM, Lima N, Silvestre AJD, Queiroz MJ (2003) Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere 52:967–973

    Article  CAS  PubMed  Google Scholar 

  • May RM (2000) The dimensions of life on Earth. In: Raven PH, Williams T (eds) Nature and human society: the quest for a sustainable world. National Academy, Washington, DC, pp 30–45

    Google Scholar 

  • May RM (2010) Ecology. Tropical arthropod species, more or less? Science 329:41–42

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T (2006) Survival curves for microbial species stored by freeze-drying. Cryobiology 52:27–32

    Article  PubMed  Google Scholar 

  • Moore RT (1980) Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Botanica Marina 23:361–373

    Google Scholar 

  • Mora C, Tittensor DP, Adl S et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:1–8

    Google Scholar 

  • Mueller G, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Nagai T, Tomioka K, Takeuchi K, Ilda M, Kawada M, Sato T (2005) Evaluation of preservation techniques of microorganism resources in the MAFF Genebank. Jpn Agric Res Q 39:19–27

    Article  Google Scholar 

  • Nakasone KK, Peterson SW, Jong SC (2004) Preservation and distribution of fungal cultures. In: Foster MS, Bills GF, Mueller GM (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier Academic Press, Amsterdam, pp 37–47

    Chapter  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Abarenkov K, Veldre V, Nylinder S, DE Wit P, Brosché S, Alfredsson JF, Ryberg M, Kristiansson E (2010) An open source chimera checker for the fungal ITS region. Mol Ecol Resour 10:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • OECD (2001) Biological resource centres underpinning the future of life sciences and biotechnology. http://www.oecd.org/LongAbstract/0,3425,en264934797316857261111,00.html. Cited 01 Jun 2012

  • OECD (2007) OEDC best practice guidelines for biological resource centres. Organisation for Economic Co-operation and Development. http://www.oecd.org/sti/biotechnologypolicies/38777417.pdf. Cited 01 Jun 2012

  • Paterson RRM, Lima N (2010) Toxicology of mycotoxins. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 2, Clinical toxicology. Birkhauser Verlag Ag, Basel, pp 31–63

    Chapter  Google Scholar 

  • Perkins DD (1962) Preservation of Neurospora stock cultures with anhydrous silica gel. Can J Microbiol 8:591–594

    Article  Google Scholar 

  • Perrone G, Stea G, Epifani F, Varga J, Frisvad JC, Samson RA (2011) Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biol 115:1138–1150

    Article  CAS  PubMed  Google Scholar 

  • Peterson SW (2000) Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. In: Pitt JI, Samson RA (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 323–355

    Google Scholar 

  • Petisco C, Downey G, Murray I, Zabalgogeazcoa I, García-Criado B, García-Ciudad A (2008) Direct classification of related species of fungal endophytes (Epichloe spp.) using visible and near-infrared spectroscopy and multivariate analysis. FEMS Microbiol Lett 284:135–141

    Article  CAS  PubMed  Google Scholar 

  • Pildain MB, Frisvad JC, Vaamonde G, Cabral D, Varga J, Samson RA (2008) Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. Int J Syst Evol Microbiol 58:725–735

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI (1988) A laboratory guide to common Penicillium species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, Australia

    Google Scholar 

  • Pitt JI, Hocking AD, Glenn DR (1983) An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Microbiol 54:109–114

    CAS  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N (2009) A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Microbiol 129:187–193

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues P, Santos C, Venâncio A, Lima N (2011) Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. J Appl Microbiol 111:877–892

    Article  CAS  PubMed  Google Scholar 

  • Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci 102:5084–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosendahl S, McGee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Rossman AY (1994) A strategy for an all-taxa inventory of fungal biodiversity. In: Peng CL, Chou CH (eds) Biodiversity and terrestrial ecosystems, Academia Sinica monograph series no. 14. Academia Sinica, Taipei, pp 169–194

    Google Scholar 

  • Ryan MJ, Smith D, Jeffries P (2000) A decision-based key to determine the most appropriate protocol for the preservation of fungi. World J Microbiol Biotechnol 16:183–186

    Article  Google Scholar 

  • Ryan MJ, Jeffrie P, Bridge PD, Smith D (2001) Developing cryopreservation protocols to secure fungal gene function. Cryo Letters 22:115–124

    CAS  PubMed  Google Scholar 

  • Ryan MJ, Verkleij G, López-Ocaña L, Munaut F, Arahal DR, Simões MF et al (2012) Inter-laboratory evaluation, development and validation of fungal preservation regimes used in different European biological resources centres (BRCs). In: Paterson R, Simões MF, Pereira L, Santos C, Lima N (eds) Biological resource centres: closing the gap between science and society, Abstract book. Micoteca da Universidade do Minho, Braga, p 57

    Google Scholar 

  • Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cell. Anal Chem 73:746–750

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Varga J (2000) Molecular systematics of Aspergillus and its teleomorphs. In: Samson RA, Pitt JI (eds) Aspergillus molecular biology and genomics. Harwood Academic Publishers, Sendai, pp 9–49

    Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food- and airborne Fungi, 7th edn. CBS, Wageningen

    Google Scholar 

  • Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J (2007) Diagnostic tools to identify black aspergilli. Stud Mycol 59:129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos IM, Lima N (2001) Criteria followed in the establishment of a filamentous fungi culture collection – Micoteca da Universidade do Minho (MUM). World J Microbiol Biotechnol 17:215–220

    Article  Google Scholar 

  • Santos C, Lima N (2010) A Identificação de fungos pela espectrometria de massa através da técnica de MALDI-TOF ICMS. In: Dianese JC, Santos LTP (eds) Proceedings of the 6th Brazilian congress of mycology, Brazilian Society of Mycology, CD-Rom, Brasilia, Brazil, 29th Nov to 2nd Dec 2010

    Google Scholar 

  • Santos IM, Venâncio A, Lima N (1998) Fungos contaminantes na indústria alimentar. Micoteca da Universidade do Minho, Braga, pp 1–128

    Google Scholar 

  • Santos IM, Abrunhosa L, Venâncio A, Lima N (2002a) The effect of culture preservation techniques on patulin and citrinin production by Penicillium expansum link. Lett Appl Microbiol 35:272–275

    Article  CAS  PubMed  Google Scholar 

  • Santos IM, Lima N, Ryan MJ, Smith D (2002b) Metabolic response of filamentous fungi to preservation stress. In: Santos IM, Venâncio A, Lima N (eds) Ecologia dos fungos. Micoteca da Universidade do Minho, Braga, pp 55–66

    Google Scholar 

  • Santos C, Paterson RMR, Venâncio A, Lima N (2010) Filamentous fungal characterisations by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. J Appl Microbiol 108:375–385

    Article  CAS  PubMed  Google Scholar 

  • Schipper MAA, Bekker-Holtman J (1976) Viability of lyophilized fungal cultures. Antonie Van Leeuwenhoek 42:325–328

    Article  CAS  PubMed  Google Scholar 

  • Schmit JP, Mueller GM (2007) An estimate of the lower limit of global fungal diversity. Biodivers Conserv 16:99–111

    Article  Google Scholar 

  • Scoble MJ (2010) Natural history collections digitization: rationale and value. Biodivers Inform 7:77–80

    Google Scholar 

  • Seifert KA, Samson RA, deWaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci 104:3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma B, Smith D (1999) Recovery of fungi after storage for over a quarter of a century. World J Microbiol Biotechnol 15:517–519

    Article  Google Scholar 

  • Smith D (2003) Culture collections over the world. Int Microbiol 6:95–100

    Article  PubMed  Google Scholar 

  • Smith D (2012) Culture collections. In: Saraslani S, Gadd GM (eds) Advances in applied microbiology, vol 79. Academic, Burlington, pp 73–118

    Google Scholar 

  • Smith D, Onions AHS (1983) A comparison of some preservation techniques for fungi. Trans Br Mycol Soc 81:535–540

    Article  Google Scholar 

  • Smith D, Onions AHS (1994) The preservation and maintenance of living fungi. IMI technical handbooks: No. 1, 2nd edn. International Mycological Institute, CAB International, Oxfordshire

    Google Scholar 

  • Smith D, Ryan M (2012) Implementing best practices and validation of cryopreservation techniques for microorganisms. Scientific World Journal. doi:10.1100/2012/805659

  • Smith D, Ryan MJ, Day JG (eds) (2001) The UK National Culture Collection (UKNCC) biological resource: properties, maintenance and management. UKNCC, Surrey, United Kingdom

    Google Scholar 

  • Soares C, Rodrigues P, Peterson SW, Lima N, Venâncio A (2012) Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia 104:682–697

    Article  CAS  PubMed  Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  Google Scholar 

  • Uruburu F (2003) History and services of culture collections. Int Microbiol 6:101–103

    Article  PubMed  Google Scholar 

  • Uzunova-Doneva T, Donev T (2005) Anabiosis and conservation of microorganisms. J Cult Collect 4:17–28

    Google Scholar 

  • Vaamonde G, Patriarca A, Pinto VF, Comeria R, Degrossi C (2003) Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates in Argentina. Int J Food Microbiol 88:79–84

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Due M, Frisvad JC, Samson RA (2007a) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga J, Frisvad JC, Samson RA (2007b) Polyphasic taxonomy of Aspergillus section Candidi based on molecular, morphological and physiological data. Stud Mycol 59:75–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • WFCC (2010) The WFCC guidelines for the establishment and operation of Culture Collections. http://www.wfcc.info/guidelines. Cited 01 Jun 2012

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Whittaker RH (1959) On the broad classification of organisms. Q Rev Biol 34:210–226

    Article  CAS  PubMed  Google Scholar 

  • Wubet T, Weiss M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycol Res 110:1059–1069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to this work has received funding from the European Community’s Seventh Framework Programme (FP7, 2007–2013), Research Infrastructures action, under the grant agreement No. FP7-228310 (EMbaRC project). M.F. Simões acknowledges FCT – Portugal for the scholarship SFRH/BD/64260/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simões, M.F., Pereira, L., Santos, C., Lima, N. (2013). Polyphasic Identification and Preservation of Fungal Diversity: Concepts and Applications. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_5

Download citation

Publish with us

Policies and ethics