Skip to main content

Land Surface Temperature (LST) Retrieval from GOES Satellite Observations

  • Chapter
  • First Online:
Satellite-based Applications on Climate Change
  • 2017 Accesses

Abstract

This chapter includes recent advances on the retrieval of land surface temperature (LST) from satellite observations. Special attention has been paid to the LST retrieval from GOES satellites. Detailed introduction is given about the literature review, the existing problems and challenges, and the advantages of geostationary satellites and GOES instruments. Algorithm theoretical basis (both physical and mathematical) has been provided. The simulation test and error analysis are enclosed. The chapter gives a complete coverage on the LST retrieval from GOES observations, including the physical problem, mathematical description of the theoretical basis, forward model simulations, and algorithm coefficient derivation, validation against ground observations, and error estimate and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aminou D et al (2003) Meteosat second generation: a comparison of on-ground and on-flight imaging and radiometric performances of SEVIRI on MSG-1. Proceedings of ‘the 2003 EUMETSAT meteorological satellite conference’, Weimar, Germany, 29 Sept–3 Oct 2003, pp 236–243

    Google Scholar 

  • Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD- a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357

    Article  Google Scholar 

  • Augustine JA, Hodges GB, Cornwall CR, Michalsky JJ, Medina CI (2005) An update on SURFRAD- the GCOS surface radiation budget network for the continental United States. J Atmos Oceanic Technol 22:1460–1472

    Article  Google Scholar 

  • Becker F, Li ZL (1990) Towards a local split window method over land surfaces. Int J Remote Sens 11:369–393

    Article  Google Scholar 

  • Berk A, Anderson GP, Acharya PK, Chetwynd JH, Hoke ML, Bernstein LS, Shettle EP, Matthew MW, Alder-Golden SM (2000) MODTRAN4 version 2 users’s manual, space vehicles directorate, Hanscom AFB, MA 01731-3010, Apr 2000

    Google Scholar 

  • Borbas EE, Moy L, Seemann SW, Knuteson RO, Antonelli P, Li J, Huang HL, Trigo I, de Meteorologia I, Zhou L (2008) A global infrared land surface emissivity database and its validation. P2.7, AMS annual meeting, New Orleans, Jan 2008

    Google Scholar 

  • Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31:L13217. doi:10.1029/2004GL019998

    Article  Google Scholar 

  • Brown OB, Monnett PJ (1996) MODIS infrared sea surface temperature, Algorithm theoretical basis document (ATBD), version 2.0, Available at: http://oceancolor.gsfc.nasa.gov/DOCS/atbd_mod25.pdf

  • Caselles V, Coll C, Valor E (1997) Land surface temperature determination in the whole Hapex Sahell area from AVHRR data. Int J Remote Sens 18:1009–1027

    Article  Google Scholar 

  • Chin M, Rood RB, Lin SJ, Muller JF, Thomspon AM (2000) Atmospheric sulfur cycle in the global model GOCART: model description and global properties. J Geophys Res 105:24,671–24,687

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change (2001) the scientific basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Coll C, Valor E, Schmugge T, Caselles V (1997) A procedure for estimating the land surface emissivity difference in the AVHRR channels 4 and 5. Remote sensing application to the valencian area, Spain

    Google Scholar 

  • Durre I, Wallace JM (2001) The warm season dip in diurnal temperature range over the eastern United States. J Climate 14:354–360

    Article  Google Scholar 

  • Easterling DR, Peterson TC, Karl TR (1996) On the development and use of homogenized climate datasets. J Climate 9:1429–1434

    Article  Google Scholar 

  • Ellrod GP (1998) Detection and analysis of fog at night using GOES multispectral infrared imagery. NOAA Tech Rep NESDIS 75:22

    Google Scholar 

  • EUMETSAT homepage, http://www.eumetsat.int/groups/ops/documents/document/pdf_ten_052562_msg1_spctrsp.pdf

  • Faysash DA, Smith EA (1999) Simultaneous land surface temperature-emissivity retrieval in the infrared split window. J Atmos Ocean Tech 16(11):1673–1689

    Article  Google Scholar 

  • Faysash DA, Smith EA (2000) Simultaneous retrieval of diurnal to seasonal surface temperatures and emissivities over SGP ARM-CART site using GOES split window. J Appl Meteorol 39(7):971–982

    Article  Google Scholar 

  • Flynn L (2006) Comparisons two sets of noisy measurements. NOAA technical report, NESDIS office of research and applications

    Google Scholar 

  • Francois C, Ottle C (1996) Atmospheric corrections in the Thermal Infrared: Global and Water Vapor Dependent Split-Window Algorithms-Applications to ATSR and AVHRR data. IEEE Trans Geosci Remote Sens 34(2):457–470

    Article  Google Scholar 

  • Gallo KP, Owen TW (1999) Satellite-based adjustments for the urban heat island temperature bias. J Appl Meteorol 38(6):806–813

    Article  Google Scholar 

  • Gallo KP, Owen TW, Easterling DR (1999) Temperature trends of the U.S. historical climatology network based on satellite-designated land use/land cover. J Clim 12:1344–1348

    Article  Google Scholar 

  • Hansen M, Reed B (2000) A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products. Int J Remote Sens 21:1365–1373

    Article  Google Scholar 

  • Harris AR, Mason IM (1992) An extension to the split-window technique giving improved atmospheric correction and total water vapor. Int J Remote Sens 13:881–892

    Article  Google Scholar 

  • Hillger D, Ellrod W, Gary P (2003) Detection of important atmospheric and surface features by employing principal component image transformation of GOES imagery. J Appl Meteorol 42:611–629

    Article  Google Scholar 

  • Karl TR, Kukla G, Gavin J (1984) Decreasing diurnal temperature range in the United States and Canada from 1941-1980. J Clim Appl Meteor 23:1489–1504

    Article  Google Scholar 

  • Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming. Bull Am Meteorol Soc 74:1007–1023

    Article  Google Scholar 

  • Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperature. IEEE Trans Geosci Remote Sens 31:1155–1164

    Article  Google Scholar 

  • Li ZL, Becker F (1993) Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens Environ 43:67–85

    Article  Google Scholar 

  • Liang S (2001) An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery. IEEE Trans Geosci Remote Sens 39:264–274

    Article  Google Scholar 

  • Ma XL, Wan Z, Moeller CC, Menzel WP, Gumley LE (2002) Simultaneous retrieval of atmospheric profiles, land surface temperature, and surface emissivity from Moderate Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. Appl Opt 41:909–924

    Article  Google Scholar 

  • May DA (1993) Global and regional comparative performance of linear and non-linear satellite multichannel sea surface temperature algorithms, Tech. Rep. NRL/MR/7240-93-7049, Nav. Res. Lab., Stennis Space Cent., Miss., Washington, D.C.

    Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res 90:11587–11601

    Article  Google Scholar 

  • McFarland MJ, Miller RL, Neale CMU (1990) Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Trans Geosci Remote Sens 28:839–845

    Article  Google Scholar 

  • McMillin LM (1975) Estimation of sea surface temperatures from two infrared window measurements with different absorption. J Geophys Res 80:5113–5117

    Article  Google Scholar 

  • McMillin LM, Crosby DS (1984) Theory and validation of multiple window sea surface temperature technique. J Geophys Res 89:3655–3661

    Article  Google Scholar 

  • Menzel WP, Purdom JFW (1994) Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites. Bull Am Meteorol Soc 75:757–781

    Article  Google Scholar 

  • Norman JM, Becker F (1995) Terminology in thermal infrared remote sensing of natural surfaces. Remote Sens Rev 12:159–173

    Article  Google Scholar 

  • Peterson TC (2003) Assessment of urban versus rural in situ surface temperature in the contiguous United States: no difference found. J Clim 16:2941–2959

    Article  Google Scholar 

  • Prata AJ (1993) Land surface temperatures derived from the AVHRR and the ATSR, 1, theory. J Geophys Res 98:16,689–16,702

    Article  Google Scholar 

  • Prata AJ (1994) Land surface temperatures derived from the AVHRR and the ATSR, 2, experimental results and validation of AVHRR algorithms. J Geophys Res 99:13,025–13,058

    Article  Google Scholar 

  • Prata AJ, Platt CMR (1991) Land surface temperature measurements from the AVHRR. In: Proceedings of the 5th AVHRR data users conference, Tromso, Norway, 25–28 Jun, pp 438–443. EUM P09, 1991

    Google Scholar 

  • Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA-7/AVHRR. J Geophys Res 89:7231–7237

    Article  Google Scholar 

  • Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S, Ratier A (2002) An introduction to meteosat second generation (MSG). Bull Am Meteorol Soc 83:977–992

    Article  Google Scholar 

  • Schmid J (2000) The SEVIRI instrument. Proceedings of the 2000 EUMETSAT meteorological satellite data user’s conference, Bologna, Italy, 29 May–2 Jun 2000

    Google Scholar 

  • Schmit TJ, Feltz WF, Menzel WP, Jung J, Noel AP, Heil JN, Nelson JP III, Wade GS (2002) Validation and use of GOES sounder moisture information. Weather Forecast 17:139–154

    Article  Google Scholar 

  • Schmit TJ, Li J, Gunshor MM, Schmidt CC, Menzel WP, Gurka J, Sieglaff J (2004) Study of the advanced baseline imager (GOES IMAGER) on the GOES-R and beyond. 84th AMS annual meeting, Seattle, WA

    Google Scholar 

  • Schmit TJ, Menzel WP, Gurka J, Gunshor M (2007) The GOES IMAGER on GOES-R. 3rd annual symposium future national operational environmental satellite systems, San Antonio, 16 Jan 2007

    Google Scholar 

  • Schumann W, Stark H, McMullan K, Aminou D, Luhmann H-J (2002) The MSG system ESA bulletin. 111

    Google Scholar 

  • Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE (1998) The first ISLSEP field experiment (FIFE). Bull Am Meteorol Soc 69:22–27

    Article  Google Scholar 

  • Sikorski RJ, Kealy PS, Emery WJ (2002) Land surface temperature. Visible/infrared imager. Radiometer suite algorithm theoretical basis document, version 5, Raytheon Systems Company. Available at: http://npoesslib.ipo.noaa.gov/atbd/viirs/

  • Snyder WC, Wan Z, Feng YZ (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19:2753–2774

    Article  Google Scholar 

  • Sobrino JA, Li ZL, Stoll MP, Becker F (1993) Determination of the surface temperature from ATSR data. In: Proc. 25th int. symp. remote sens. Environ., Graz, Austria, 4–8 Apr, pp II-19–II-109

    Google Scholar 

  • Sobrino JA, Li ZL, Stoll MP, Becker F (1994) Improvements in the split-window technique for land surface temperature determination. IEEE Trans Geosci Remote Sens 32:243–253

    Article  Google Scholar 

  • Stone DA, Weaver AJ (2003) Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model. Clim Dynam 20:435–445

    Google Scholar 

  • Sugita M, Brutsaert W (1993) Comparison of land surface temperature derived from satellite observations with ground truth during FI FE. Int J Remote Sens 14:1659–1676

    Article  Google Scholar 

  • Sun D, Pinker RT (2003) Estimation of land surface temperature from a geostationary operational environmental satellite (GOES-8). J Geophys Res 108. doi:10.1029/2002JD002422

  • Sun DL, Pinker RT (2004) Case study of soil moisture’s effect on land surface temperature retrieval. IEEE Trans Geosci Remote Sens Lett 1:127–130

    Article  Google Scholar 

  • Sun DL, Pinker RT, Basara JB (2004) Land surface temperature estimation from the next generation of geostationary operational environmental satellites: GOES M-Q. J Appl Meteorol 43:363–372

    Article  Google Scholar 

  • Sun DL, Pinker RT, Kafatos M (2006a) Diurnal temperature range over the United States: a satellite view. Geophys Res Lett 33. doi:10.1029/2005GL024780

  • Sun DL, Kafatos M, Pinker RT, Easterling D (2006b) Seasonal variations in diurnal temperature range from satellite and surface observations. IEEE Trans Geosci Remote Sens 44:2779–2785

    Article  Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing-active and passive, vol 111, From theory to applications. Artech, Norwood

    Google Scholar 

  • Ulivieri C, Cannizzaro G (1985) Land surface temperature retrievals from satellite measurements. Acta Astronaut 12:985–997

    Google Scholar 

  • Ulivieri C, Castronouvo MM, Francioni R, Cardillo A (1992) A SW algorithm for estimating land surface temperature from satellites. Adv Space Res 14:59–65

    Article  Google Scholar 

  • Vidal A (1991) Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. Int J Remote Sens 12:2449–2460

    Article  Google Scholar 

  • Vinnikov KY, Yu Y, Rama Varna Raja MK, Tarpley D, Goldberg M (2008) Diurnal-seasonal and weather-related variations of land surface temperature observed from geostationary satellites. Geophys Res Lett. doi:10.1029/2008GL035759,2008

  • Walton CC, Pichel WG, Sapper JF, May DA (1998) The development and operational application of non-linear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J Geophys Res 103:27999–28012

    Article  Google Scholar 

  • Wan Z (1999) MODIS land-surface temperature algorithm basis document (LST ATBD): version 3.3

    Google Scholar 

  • Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature measurement from space. IEEE Trans Geosci Remote Sens 34:892–905

    Article  Google Scholar 

  • Weng F, Grody N (1998) Physical retrieval of land surface temperature using the special sensor microwave imager. J Geophys Res 103:8839–8848

    Article  Google Scholar 

  • Yu Y, Barton IJ (1994) A non-regression-coefficients method of sea surface temperature retrieval from space. Int J Remote Sens 15:1189–1206

    Article  Google Scholar 

  • Yu Y, Privette JL, Pinheiro AC (2005) Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data. IEEE Trans Geosci Remote Sens 43:2340–2350

    Article  Google Scholar 

  • Yu Y, Pinheiro AC, Privette JL (2006) Correcting land surface temperature measurements for directional emissivity over 3-D structured vegetation. SPIE, San Diego

    Google Scholar 

  • Yu Y, Privette JP, Pinheiro AC (2008) Evaluation of split window land surface temperature algorithms for generating climate data records. IEEE Trans Geosci Remote Sens 46:179–192

    Article  Google Scholar 

  • Yu Y, Tarpley D, Privette JL, Rama Varna Raja MK, Vinnikov K, Xue H (2009a) Developing algorithm for operational GOES-R land surface temperature product. IEEE Trans Geosci Remote Sens 47:936–951

    Article  Google Scholar 

  • Yu Y, Chen M, Vinnikov K, Tarpley D, Xu H (2009b) A three-measurement model developed for evaluating satellite land surface temperature product. SPIE 2009, San Diego

    Google Scholar 

  • Yu Y, Xu H, Tarpley D, Goldberg M (2009c) A Simplified method for measuring land surface temperature and emissivity using thermal infrared split-window channels. IGARSS 2009, Proc., Cape Town

    Google Scholar 

  • Yu Y, Tarpley D, Prrivette JL, Flynn L, Xu H, Chen M, Vinnikov K, Sun D (2012) Towards satellite land surface temperature validation using SURFRAD ground measurements. IEEE Trans Geosci Remote Sens 50:704–713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, D., Yu, Y. (2013). Land Surface Temperature (LST) Retrieval from GOES Satellite Observations. In: Qu, J., Powell, A., Sivakumar, M. (eds) Satellite-based Applications on Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5872-8_19

Download citation

Publish with us

Policies and ethics