Skip to main content

Nucleolar Transport of Putative GTPase GNL1 and Related Proteins

  • Chapter
  • First Online:
Proteins of the Nucleolus

Abstract

Regulation of gene expression by spatial confinement has emerged as a widely explored area in recent years. The mechanisms of protein sorting into various sub-cellular compartments as well as the transport mechanisms in and out of the nucleus/nucleolus have also been studied widely. The nucleolus, popularly known as the ribosome factory, is the principal site of ribosome biogenesis that includes synthesis, modification, processing, and assembly of rRNA along with ribosomal proteins into the ribosomal subunits. Advancements in nucleolar proteomic analysis reveal the presence of around 700 proteins of which G-proteins and those belonging to the GTP/ATPase family comprise a major part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Korr D, Barwell K, Sjulsen C, Gajewski C, Manfredi G, Ackerman S, Tzagoloff A (2003) MTG1 codes for a conserved protein required for mitochondrial translation. Mol Biol Cell 14:2292–2302

    Article  PubMed  CAS  Google Scholar 

  • Bassler J, Grandi P, Gadal O, Lessmann T, Petfalski E, Tollervey D, Lechner J, Hurt E (2001) Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol Cell 8:517–529

    Article  PubMed  CAS  Google Scholar 

  • Boddapati N, Anbarasu K, Suryaraja R, Tendulkar A, Mahalingam S (2012) Subcellular distribution of the human putative nucleolar GTPase GNL1 is regulated by a novel arginine/lysine-rich domain and a GTP binding domain in a cell cycle-dependent manner. J Mol Biol 416:346–366

    Article  PubMed  CAS  Google Scholar 

  • Chennupati V, Datta D, Rao MRS, Boddapati N, Kayasani M, Sankaranarayanan R, Mishra M, Seth P, Mani C, Mahalingam S (2011) Signals and pathways regulating nucleolar retention of novel putative nucleolar GTPase NGP-1(GNL-2). Biochem 50:4521–4536

    Article  CAS  Google Scholar 

  • Daigle DM, Brown ED (2004) Studies of the interaction of Escherichia coli YjeQ with the ­ribosome in vitro. J Bacteriol 186:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  • Du X, Subba Rao M, Chen X, Wu W, Mahalingam S, Balasundaram D (2006) The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol Biol Cell 17:460–474

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci Publ Protein Soc 8:978–984

    Article  CAS  Google Scholar 

  • Kallstrom G, Hedges J, Johnson A (2003) The putative GTPases Nog1p and Lsg1p are required for 60S ribosomal subunit biogenesis and are localized to the nucleus and cytoplasm, respectively. Mol Cell Biol 23:4344–4355

    Article  PubMed  CAS  Google Scholar 

  • Kim DJ, Jang JY, Yoon H-J, Suh SW (2008) Crystal structure of YlqF, a circularly permuted GTPase: implications for its GTPase activation in 50S ribosomal subunit assembly. Proteins 72:1363–1370

    Article  CAS  Google Scholar 

  • Koonin EV, Wolf YI, Aravind L (2000) Protein fold recognition using sequence profiles and its application in structural genomics. Adv Protein Chem 54:245–275

    Article  PubMed  CAS  Google Scholar 

  • Leipe D, Wolf Y, Koonin E, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317:41–72

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Coggins JR, Anton IA (1991) Evidence for an ancestral core structure in nucleotide-binding proteins with the type A motif. J Mol Biol 221:751–754

    Article  PubMed  CAS  Google Scholar 

  • Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N (2002) Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148:3539–3552

    PubMed  CAS  Google Scholar 

  • Racevskis J, Dill A, Stockert R, Fineberg SA (1996) Cloning of a novel nucleolar guanosine 5′-triphosphate binding protein autoantigen from a breast tumor. Cell Growth Differ 7:271–280

    PubMed  CAS  Google Scholar 

  • Rao S, Kumari G, Balasundaram D, Sankaranarayanan R, Mahalingam S (2006) A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. J Mol Biol 364:637–654

    Article  PubMed  CAS  Google Scholar 

  • Reynaud E, Andrade M, Bonneau F, Ly TBN, Knop M, Scheffzek K, Pepperkok R (2005) Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization. BMC Biol 3:21

    Article  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Saveanu C, Namane A, Gleizes P-E, Lebreton A, Rousselle J-C, Noaillac-Depeyre J, Gas N, Jacquier A, Fromont-Racine M (2003) Sequential protein association with nascent 60S ribosomal particles. Mol Cell Biol 23:4449–4460

    Article  PubMed  CAS  Google Scholar 

  • Tsai R, McKay R (2002) A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev 16:2991–3003

    Article  PubMed  CAS  Google Scholar 

  • Vernet C, Ribouchon MT, Chimini G, Pontarotti P (1994) Structure and evolution of a member of a new subfamily of GTP-binding proteins mapping to the human MHC class I region. Mamm Genome 5:100–105

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahalingam, S., Rao, M.R.K.S., Boddapati, N., Jose, T.I., Datta, D. (2013). Nucleolar Transport of Putative GTPase GNL1 and Related Proteins. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_9

Download citation

Publish with us

Policies and ethics