Skip to main content

Nucleolar Localization/Retention Signals

  • Chapter
  • First Online:
Proteins of the Nucleolus

Abstract

Most nuclear proteins are highly dynamic and are able to accumulate inside specific non-membrane-bound domains. A current key question is how macromolecules find and accumulate at nuclear target sites that are not separated from the nucleoplasm by membranes. According to recent findings, nucleolar localization results from nucleolar retention rather than targeting to this compartment. Here, we discuss recent data concerning nucleolar retention via so-called nucleolar localization/retention signals (NoLS/NoRS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MM, Rix A, Guo J, Bringhurst R, Henderson JE (1999) The nucleolar targeting signal (NTS) of parathyroid hormone related protein mediates endocytosis and nucleolar translocation. J Bone Miner Res 14:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Adachi Y, Copeland TD, Hatanaka M, Oroszlan S (1993) Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. J Biol Chem 268:13930–13934

    PubMed  CAS  Google Scholar 

  • Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: nucleolar proteome database – 2008 update. Nucleic Acids Res 37:181–184

    Article  CAS  Google Scholar 

  • Albrethsen J, Knol JC, Jimenez CR (2009) Unravelling the nuclear matrix proteome. J Proteomics 72:71–81

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  PubMed  CAS  Google Scholar 

  • Annilo T, Karis A, Hoth S, Rikk T, Kruppa J, Metspalu A (1998) Nuclear import and nucleolar accumulation of the human ribosomal protein S7 depends on both a minimal nuclear localization sequence and an adjacent basic region. Biochem Biophys Res Commun 249:759–766

    Article  PubMed  CAS  Google Scholar 

  • Antoine M, Reimers K, Dickson C, Kiefer P (1997) Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal. J Biol Chem 272:29475–29481

    Article  PubMed  CAS  Google Scholar 

  • Axton R, Wallis J, Taylor H, Hanks M, Forrester L (2008) Aminopeptidase O contains a functional nucleolar localization signal and is implicated in vascular biology. J Cell Biochem 103:1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Birbach A, Bailey ST, Ghosh S, Schmid JA (2004) Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF- kappaB inducing kinase NIK. J Cell Sci 117:3615–3624

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  PubMed  CAS  Google Scholar 

  • Boisvert FM, Lam YW, Lamont D, Lamont AI (2010) A quantitative proteomic analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9:457–470

    Article  PubMed  CAS  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  PubMed  CAS  Google Scholar 

  • Boyne J, Whitehouse A (2006) Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNA. Proc Nat Acad Sci USA 103:15190–15195

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2:E107–E112

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Brett ME, He B (2002) Signals that dictate nuclear, nucleolar, and cytoplasmic shuttling of the gamma(1)34.5 protein of herpes simplex virus type 1. J Virol 76:9434–9445

    Article  PubMed  CAS  Google Scholar 

  • Cisterna B, Biggiogera M (2010) Ribosome biogenesis: from structure to dynamics. Int Rev Cell Mol Biol 284:67–111

    Article  PubMed  CAS  Google Scholar 

  • Cmarko D, Smigova J, Minichova L, Popov A (2008) Nucleolus: the ribosome factory. Histol Histopathol 23:1291–1298

    PubMed  CAS  Google Scholar 

  • Cochrane A, Perkins A, Rosen C (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64:881–885

    PubMed  CAS  Google Scholar 

  • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1:411–415

    Article  PubMed  CAS  Google Scholar 

  • Condemine W, Takahashi Y, Le Bras M, de The H (2007) A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 120:3219–3227

    Article  PubMed  CAS  Google Scholar 

  • Dang C, Lee W (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264:18019–18023

    PubMed  CAS  Google Scholar 

  • Emmott E, Hiscox JA (2009) Nucleolar targeting: the hub of the matter. EMBO Rep 10:231–238

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284:27918–27923

    Article  PubMed  CAS  Google Scholar 

  • Favre D, Studer E, Michel MR (1994) Two nucleolar targeting signals present in the N-terminal part of Semliki Forest virus capsid protein. Arch Virol 137:149–155

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Suzuki S, Kanno M, Sugiyama H, Takahashi H, Tanaka J (2006) Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25. Exp Cell Res 312:1703–1712

    Article  PubMed  CAS  Google Scholar 

  • Goyal P, Pandey D, Behring A, Siess W (2005) Inhibition of nuclear import of LIMK2 in endothelial cells by protein kinase C-dependent phosphorylation at Ser-283. J Biol Chem 280:27569–27577

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Dallmann K, Kwang J (2003) Identification of nucleolus localization signal of betanodavirus GGNNV protein alpha. Virology 306:225–235

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ding Q, Lin F, Pan W, Lin J, Zheng A (2009) Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res 145:312–320

    Article  PubMed  CAS  Google Scholar 

  • Gutiyama L, da Cunha J, Schenkman S (2008) Histone H1 of Trypanosoma cruzi is concentrated in the nucleolus region and disperses upon phosphorylation during progression to mitosis. Eukaryot Cell 7:560–568

    Article  PubMed  CAS  Google Scholar 

  • Hahn MA, Marsh DJ (2007) Nucleolar localization of parafibromin is mediated by three nucleolar localization signals. FEBS Lett 581:5070–5074

    Article  PubMed  CAS  Google Scholar 

  • Hancock R (2000) A new look at the nuclear matrix. Chromosoma 109:219–225

    Article  PubMed  CAS  Google Scholar 

  • Harold F (2005) Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev 69:544–564

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka M (1990) Discovery of the nucleolar targeting signal. Bioessays 12:143–148

    Article  PubMed  CAS  Google Scholar 

  • Haupt S, Stroganova T, Ryabov E, Kim S, Fraser G, Duncan G, Mayo M, Barker H, Taliansky M (2005) Nucleolar localization of potato leafroll virus capsid proteins. J Gen Virol 86:2891–2896

    Article  PubMed  CAS  Google Scholar 

  • Henderson J, Amizuka N, Warshawsky H, Biasotto D, Lanske B, Goltzman D, Karaplis A (1995) Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol 15:4064–4075

    PubMed  CAS  Google Scholar 

  • Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1:415–431

    Article  PubMed  CAS  Google Scholar 

  • Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127

    Article  PubMed  CAS  Google Scholar 

  • Horke S, Reumann K, Schweizer M, Will H, Heise T (2004) Nuclear trafficking of La protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J Biol Chem 279:26563–26570

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Mitsutake V, Igarashi Y (2006) Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein. Biochem Biophys Res Commun 343:982–987

    Article  PubMed  CAS  Google Scholar 

  • Jakob R (1995) Electroporation-mediated delivery of nucleolar targeting sequences from Semliki Forest virus nucleocapsid protein. Prep Biochem 25:99–117

    Article  PubMed  CAS  Google Scholar 

  • Kaiser T, Intine R, Dunndr M (2008) De novo formation of a subnuclear body. Science 322:1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Kakuk A, Friedlander E, Vereb J, Lisboa D, Bagossi P (2008) Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4- kinase PI4K230. Exp Cell Res 314:2376–2388

    Article  PubMed  CAS  Google Scholar 

  • Karsenti E (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Cook P (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153:1341–1353

    Article  PubMed  CAS  Google Scholar 

  • Kubota S, Siomi H, Satoh T, Endo S, Maki M, Hatanaka M (1989) Functional similarity of HIV-I rev and HTLV-I rex proteins: identification of a new nucleolar-targeting signal in rev protein. Biochem Biophys Res Commun 162:963–970

    Article  PubMed  CAS  Google Scholar 

  • Kubota S, Duan L, Furuta R, Hatanaka M, Pomerantz R (1996) Nuclear preservation and cytoplasmic degradation of human immunodeficiency virus type 1 Rev protein. J Virol 70:1282–1287

    PubMed  CAS  Google Scholar 

  • Kubota S, Copeland T, Pomerantz R (1999) Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. Oncogene 18:1503–1514

    Article  PubMed  CAS  Google Scholar 

  • Kundu-Michalik S, Bisotti M, Lipsius E, Bauche A, Kruppa A, Klokow T, Kammler G, Kruppa J (2008) Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters. Mol Biol Evol 25:580–590

    Article  PubMed  CAS  Google Scholar 

  • Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    Article  PubMed  CAS  Google Scholar 

  • Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105

    Article  PubMed  CAS  Google Scholar 

  • Lechertier T, Sirri V, Hernandez-Verdun D, Roussel P (2007) A B23-interacting sequence as a tool to visualize protein interactions in a cellular context. J Cell Sci 120:265–275

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Jin R, Zhang B, Chen H, Bai YX, Yang PX, Han SW, Xie YH, Huang PT, Huang C, Huang JJ (2008) Nucleolar localization of TERT is unrelated to telomerase function in human cells. J Cell Sci 121:2169–2176

    Article  PubMed  CAS  Google Scholar 

  • Lindström MS, Zhang Y (2008) Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem 283:15568–15576

    Article  PubMed  CAS  Google Scholar 

  • Liu JL, Lee LF, Ye Y, Qian Z, Kung HJ (1997) Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ. J Virol 71:3188–3196

    PubMed  CAS  Google Scholar 

  • Lixin R, Efthymiadis A, Henderson B, Jans DA (2001) Novel properties of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 284:185–193

    Article  PubMed  CAS  Google Scholar 

  • Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH (2000) Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2:179–181

    Article  PubMed  CAS  Google Scholar 

  • Martelli AM, Falcieri E, Zweyer M, Bortul R, Tabellini G, Cappellini A, Cocco L, Manzoli L (2002) The controversial nuclear matrix: a balanced point of view. Histol Histopathol 17:1193–1205

    PubMed  CAS  Google Scholar 

  • Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17:639–647

    Article  PubMed  CAS  Google Scholar 

  • Mears WE, Lam V, Rice SA (1995) Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J Virol 69:935–947

    PubMed  CAS  Google Scholar 

  • Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S (2004) HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6:642–647

    Article  PubMed  CAS  Google Scholar 

  • Melén K, Kinnunen L, Fagerlund R, Ikonen N, Twu KY, Krug RM, Julkunen I (2007) Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. J Virol 81:5995–6006

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2001) The concept of self-organization in cellular architecture. J Cell Biol 155:181–185

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2008a) Cell biology: nuclear order out of chaos. Nature 456:333–334

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2008b) Physiological importance of RNA and protein mobility in the cell nucleus. Histochem Cell Biol 129:5–11

    Article  PubMed  CAS  Google Scholar 

  • Moroianu J, Riordan JF (1994) Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 203:1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Musinova YR, Lisitsyna OM, Golyshev SA, Tuzhikov AI, Polyakov VY, Sheval EV (2011) Nucleolar localization/retention signal is responsible for transient accumulation of histone H2B in the nucleolus through electrostatic interactions. Biochim Biophys Acta 1813:27–38

    Article  PubMed  CAS  Google Scholar 

  • Myre MA, O’Day DH (2002) Nucleomorphin. A novel, acidic, nuclear calmodulin-binding protein from Dictyostleium that regulates nuclear number. J Biol Chem 277:19735–19744

    Article  PubMed  CAS  Google Scholar 

  • Nagahama M, Hara Y, Seki A, Yamazoe T, Kawate Y, Shinohara T, Hatsuzawa K, Tani K, Tagaya M (2004) NVL2 is a nucleolar AAA-ATPase that interacts with ribosomal protein L5 through its nucleolar localization sequence. Mol Biol Cell 15:5712–5723

    Article  PubMed  CAS  Google Scholar 

  • Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474

    PubMed  CAS  Google Scholar 

  • Nosaka T, Siomi H, Adachi Y, Ishibashi M, Kubota S, Maki M, Hatanaka M (1989) Nucleolar targeting signal of human T-cell leukemia virus type I rex-encoded protein is essential for cytoplasmic accumulation of unspliced viral mRNA. Proc Nat Acad Sci USA 86:9798–9802

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (1998) The plurifunctional nucleolus. Nucleic Acids Res 26:3871–3876

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11:799–805

    PubMed  CAS  Google Scholar 

  • Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3:a000638

    Article  PubMed  CAS  Google Scholar 

  • Pederson T, Tsai RY (2009) In search of nonribosomal nucleolar protein function and regulation. J Cell Biol 184:771–776

    Article  PubMed  CAS  Google Scholar 

  • Phair R, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Scaffidi P, Elbi C, Vecerová J, Dey A, Ozato K, Brown DT, Hager G, Bustin M, Misteli T (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402

    Article  PubMed  CAS  Google Scholar 

  • Quaye IK, Toku S, Tanaka T (1996) Sequence requirement for nucleolar localization of rat ribosomal protein L31. Eur J Cell Biol 69:151–155

    PubMed  CAS  Google Scholar 

  • Reed ML, Dove BK, Jackson RM, Collins R, Brooks G, Hiscox JA (2006) Delineation and modelling of a nucleolar retention signal in the coronavirus nucleocapsid protein. Traffic 7:833–848

    Article  PubMed  CAS  Google Scholar 

  • Rikkonen M, Peränen J, Kaariainen L (1992) Nuclear and nucleolar targeting signals of Semliki Forest virus nonstructural protein nsP2. Virology 189:462–473

    Article  PubMed  CAS  Google Scholar 

  • Rowland R, Yoo D (2003) Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res 95:23–33

    Article  PubMed  CAS  Google Scholar 

  • Rucktäschel R, Girzalsky W, Erdmann R (2011) Protein import machineries of peroxisomes. Biochim Biophys Acta 1808:892–900

    Article  PubMed  CAS  Google Scholar 

  • Saiwaki T, Kotera I, Sasaki M, Takagi M, Yoneda Y (2005) In vivo dynamics and kinetics of pKi-67: transition from a mobile to an immobile form at the onset of anaphase. Exp Cell Res 308:123–134

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Zachmann M, Nigg E (1993) Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 105:799–806

    PubMed  CAS  Google Scholar 

  • Schwenkert S, Soll J, Bolter B (2011) Protein import into chloroplasts–how chaperones feature into the game. Biochim Biophys Acta 1808:901–911

    Article  PubMed  CAS  Google Scholar 

  • Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ (2010) Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 38:7388–7399

    Article  PubMed  CAS  Google Scholar 

  • Scott MS, Troshin PV, Barton GJ (2011) NoD: a nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinformatics 12:317

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Ikegami M (2009) Characterization of signals that dictate nuclear/nucleolar and cytoplasmic shuttling of the capsid protein of tomato leaf curl Java virus associated with DNA beta satellite. Virus Res 144:145–153

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z, Lewis JA, Chirico WJ (2004) Nuclear and nucleolar localization of 18-kDa fibroblast growth factor-2 is controlled by C-terminal signals. J Biol Chem 279:40153–40160

    Article  PubMed  CAS  Google Scholar 

  • Sheval EV, Polyakov VY (2002) Immunocytochemical study of PCNA distribution in nuclei with stabilized and non-stabilized nuclear matrix. Biol Membr 19:237–242

    Article  CAS  Google Scholar 

  • Sheval E, Dudnik O, Abramchuk S, Polyakov V (2009) Perichromosomal layer proteins associate with chromosome scaffold and nuclear matrix throughout the cell cycle. Biol Membr 26:126–142

    CAS  Google Scholar 

  • Shu-Nu C, Lin CH, Lin A (2000) An acidic amino acid cluster regulates the nucleolar localization and ribosome assembly of human ribosomal protein L22. FEBS Lett 484:22–28

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Paik J, Gunjan A (2009) Generation and management of excess histones during the cell cycle. Front Biosci 14:3145–3158

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Shida H, Nam SH, Nosaka T, Maki M, Hatanaka M (1988) Sequence requirements for nucleolar localization of human T cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 55:197–209

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Shida H, Maki M, Hatanaka M (1990) Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 64:1803–1807

    PubMed  CAS  Google Scholar 

  • Song Z, Wu M (2005) Identification of a novel nucleolar localization signal and a degradation signal in Survivin-deltaEx3: a potential link between nucleolus and protein degradation. Oncogene 24:2723–2734

    Article  PubMed  CAS  Google Scholar 

  • Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochem (Mosc) 72:1439–1457

    Article  CAS  Google Scholar 

  • Speil J, Kubitscheck U (2010) Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. Biochim Biophys Acta 1803:396–404

    Article  PubMed  CAS  Google Scholar 

  • Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N (2007) G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 99:541–552

    Article  PubMed  CAS  Google Scholar 

  • Takata H, Matsunaga S, Morimoto A, Ono-Maniwa R, Uchiyama S, Fukui K (2007) H1.X with different properties from other linker histones is required for mitotic progression. FEBS Lett 581:3783–3788

    Article  PubMed  CAS  Google Scholar 

  • Taliansky ME, Brown JW, Rajamäki ML, Valkonen JP, Kalinina NO (2010) Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 77:119–158

    Article  PubMed  CAS  Google Scholar 

  • Tamanini F, Kirkpatrick LL, Schonkeren J, van Unen L, Bontekoe C (2000) The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar- targeting signal equivalent to the HIV-1 regulatory proteins. Hum Mol Genet 9:1487–1493

    Article  PubMed  CAS  Google Scholar 

  • Tan JH, Wooley JC, LeStourgeon WM (2000) Nuclear matrix-like filaments and fibrogranular complexes form through the rearrangement of specific nuclear ribonucleoproteins. Mol Biol Cell 11:1547–1554

    PubMed  CAS  Google Scholar 

  • Thébault S, Basbous J, Gay B, Devaux C, Mesnard JM (2000) Sequence requirement for the nucleolar localization of human I-mfa domain-containing protein (HIC p40). Eur J Cell Biol 79:834–838

    Article  PubMed  Google Scholar 

  • Thoms HC, Dunlop MG, Stark LA (2007) CDK4 inhibitors and apoptosis: a novel mechanism requiring nucleolar targeting of RelA. Cell Cycle 6:1293–1297

    Article  PubMed  CAS  Google Scholar 

  • Timmers AC, Stuger R, Schaap PJ, Van’t Riet J, Raué HA (1999) Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett 452:335–340

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Ramirez J (2009) A chemokine targets the nucleus: Cxcl12-gamma isoform localizes to the nucleolus in adult mouse heart. PLoS One 4:7570

    Article  CAS  Google Scholar 

  • Tsutsui KM, Sano K, Tsutsui K (2005) Dynamic view of the nuclear matrix. Acta Med Okayama 59:113–120

    PubMed  CAS  Google Scholar 

  • Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H (1994) Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 26:23776–23783

    Google Scholar 

  • Volkova EG, Kurchashova SY, Polyakov VY, Sheval EV (2011) Self-organization of cellular structures induced by the overexpression of nuclear envelope proteins: a correlative light and electron microscopy study. J Electron Microsc (Tokyo) 60:57–71

    Article  CAS  Google Scholar 

  • von Kobbe C, Bohr VA (2002) A nucleolar targeting sequence in the Werner syndrome protein resides within residues 949–1092. J Cell Sci 115:3901–3907

    Article  CAS  Google Scholar 

  • Wang Y, Chen B, Li Y, Zhou D, Chen S (2011) PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Biochim Biophys Acta 1813:109–119

    Article  PubMed  CAS  Google Scholar 

  • Wanzel M, Russ AC, Kleine-Kohlbrecher D, Colombo E, Pelicci PG, Eilers M (2008) A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 10:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Weber JD, Kuo ML, Bothner B, DiGiammarino EL, Kriwacki RW, Roussel MF, Sherr CJ (2000) Cooperative signals governing ARF-MDM2 interaction and nucleolar localization of the complex. Mol Cell Biol 20:2517–2528

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Reece JM, Cho J, Bortner CD, Shears SB (2008) The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin. J Biol Chem 283:11823–11831

    Article  PubMed  CAS  Google Scholar 

  • Yogev O, Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta 1808:1012–1020

    Article  PubMed  CAS  Google Scholar 

  • Zemach A, Li Y, Ben-Meir H, Oliva M, Mosquna A, Kiss V, Avivi Y, Ohad N, Grafi G (2006) Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei. Plant Cell 18:133–145

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Eyrisch S, Ahmad M, Helms V (2011) Protein translocation across the ER membrane. Biochim Biophys Acta 1808:912–924

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. G. Wahl for providing histone H2B-EGFP construct. We thank E. Senchenkov, A. Lazarev, and M. Mogilnikov for technical support and S. Golyshev, A. Tuzhikov, V. Polyakov, O. Lisitsyna, and E. Kananykhina for discussion of results. This work was supported by grant from Russian Foundation for Basic Research (12-04-01237) and grant from OPTEC Ltd. (Moscow).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Sheval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sheval, E.V., Musinova, Y.R. (2013). Nucleolar Localization/Retention Signals. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_8

Download citation

Publish with us

Policies and ethics