Skip to main content

The Nucleolus as a Stress Response Organelle

  • Chapter
  • First Online:
Proteins of the Nucleolus

Abstract

The nucleolus reacts to several forms of cellular stress, which disturb the normal nucleolar functions in ribosomal DNA (rDNA) transcription and ribosome assembly. These include agents that inhibit transcription by RNA polymerase I -complex, e.g. DNA damage or cytotoxic drugs. These cause so called “ribosomal stress” or “nucleolar stress” involving nucleolar disruption and induction of a stress response with tumor suppressor p53 and its negative regulator MDM2 as the key players. On the other hand, proteotoxic stress induced by e.g. hampered protein degradation due to proteasome inhibition or increased protein synthesis due to a viral infection, can cause formation of insoluble protein and RNA aggregates to nucleoli. These nucleolar aggresomes may reflect the connections of nucleoli in nuclear export of proteins and RNA. In addition, the nucleolus is central in the regulation of certain tumor suppressor and oncogene activities. The importance of these cellular processes and nucleolar stress responses are underscored in major diseases like cancer, ribosomopathies, and even inclusion diseases. In this chapter, we introduce the nucleolus as a stress-responsive organelle, and discuss the connections with human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Act D:

Actinomycin D

DBA:

Diamond Blackfan anemia

DFC:

Dense fibrillar component

FC:

Fibrillar center

GC:

Granular component

HD:

Huntington’s disease

Mdm2:

Mouse double minute 2

OPMD:

Oculopharyngeal muscular dystrophy

poly(A) RNA:

Polyadenylated RNA

polyQ:

Polyglutamine

rDNA:

Ribosomal DNA

RNA pol:

RNA polymerase

rRNA:

Ribosomal RNA

SCA:

Spinocerebellar ataxia

UPS:

Ubiquitin proteasome system

References

  • Abella N, Brun S, Calvo M, Tapia O, Weber JD, Berciano MT, Lafarga M, Bachs O, Agell N (2010) Nucleolar disruption ensures nuclear accumulation of p21 upon DNA damage. Traffic 11:743–755

    PubMed  CAS  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433:77–83

    PubMed  CAS  Google Scholar 

  • Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26:759–772

    PubMed  CAS  Google Scholar 

  • Arabi A, Rustum C, Hallberg E, Wright AP (2003) Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 116:1707–1717

    PubMed  CAS  Google Scholar 

  • Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma, a comprehensive review of the literature. Blood 112:1593–1599

    PubMed  CAS  Google Scholar 

  • Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH et al (2009) A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 16:59–66

    PubMed  Google Scholar 

  • Baydoun HH, Bellon M, Nicot C (2008) HTLV-1 Yin and Yang, Rex and p30 master regulators of viral mRNA trafficking. AIDS Rev 10:195–204

    PubMed  Google Scholar 

  • Berciano MT, Villagra NT, Ojeda JL, Navascues J, Gomes A, Lafarga M, Carmo-Fonseca M (2004) Oculopharyngeal muscular dystrophy-like nuclear inclusions are present in normal magnocellular neurosecretory neurons of the hypothalamus. Hum Mol Genet 13:829–838

    PubMed  CAS  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6:665–672

    PubMed  CAS  Google Scholar 

  • Bhat KP, Itahana K, Jin A, Zhang Y (2004) Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 23:2402–2412

    PubMed  CAS  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    PubMed  CAS  Google Scholar 

  • Boria I, Garelli E, Gazda HT, Aspesi A, Quarello P, Pavesi E, Ferrante D, Meerpohl JJ, Kartal M, Da Costa L et al (2010) The ribosomal basis of Diamond-Blackfan Anemia, mutation and database update. Hum Mutat 31:1269–1279

    PubMed  CAS  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    PubMed  CAS  Google Scholar 

  • Bowman AB, Yoo SY, Dantuma NP, Zoghbi HY (2005) Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum Mol Genet 14:679–691

    PubMed  CAS  Google Scholar 

  • Boyd MT, Vlatkovic N, Rubbi CP (2011) The nucleolus directly regulates p53 export and degradation. J Cell Biol 194:689–703

    PubMed  CAS  Google Scholar 

  • Boyne JR, Whitehouse A (2006) Nucleolar trafficking is essential for nuclear export of intronless herpesvirus mRNA. Proc Natl Acad Sci U S A 103:15190–15195

    PubMed  CAS  Google Scholar 

  • Boyne JR, Whitehouse A (2009) Nucleolar disruption impairs Kaposi’s sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett 583:3549–3556

    PubMed  CAS  Google Scholar 

  • Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Holzel M et al (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425

    PubMed  CAS  Google Scholar 

  • Calado A, Tomé FM, Brais B, Rouleau GA, Kühn U, Wahle E, Carmo-Fonseca M (2000) Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 9:2321–2328

    PubMed  CAS  Google Scholar 

  • Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17:167–178

    PubMed  CAS  Google Scholar 

  • Castanotto D, Lingeman R, Riggs AD, Rossi JJ (2009) CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci U S A 106:21655–21659

    PubMed  CAS  Google Scholar 

  • Challagundla KB, Sun XX, Zhang X, DeVine T, Zhang Q, Sears RC, Dai MS (2011) Ribosomal protein L11 recruits miR-24/miRISC to repress c-Myc expression in response to ribosomal stress. Mol Cell Biol 31:4007–4021

    PubMed  CAS  Google Scholar 

  • Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    PubMed  CAS  Google Scholar 

  • Chen IC, Lin HY, Lee GC, Kao SH, Chen CM, Wu YR, Hsieh-Li HM, Su MT, Lee-Chen GJ (2009) Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci. BMC Mol Biol 10:9

    PubMed  Google Scholar 

  • Daelemans D, Costes SV, Lockett S, Pavlakis GN (2005) Kinetic and molecular analysis of nuclear export factor CRM1 association with its cargo in vivo. Mol Cell Biol 25:728–739

    PubMed  CAS  Google Scholar 

  • Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24:7654–7668

    PubMed  CAS  Google Scholar 

  • Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H (2006) Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 281:24304–24313

    PubMed  CAS  Google Scholar 

  • Dai MS, Arnold H, Sun XX, Sears R, Lu H (2007) Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 26:3332–3345

    PubMed  CAS  Google Scholar 

  • Dai MS, Sun XX, Lu H (2010) Ribosomal protein L11 associates with c-Myc at 5S rRNA and tRNA genes and regulates their expression. J Biol Chem 285:12587–12594

    PubMed  CAS  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    PubMed  CAS  Google Scholar 

  • Donati G, Bertoni S, Brighenti E, Vici M, Trere D, Volarevic S, Montanaro L, Derenzini M (2011a) The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 30:3274–3288

    PubMed  CAS  Google Scholar 

  • Donati G, Brighenti E, Vici M, Mazzini G, Trere D, Montanaro L, Derenzini M (2011b) Selective inhibition of rRNA transcription downregulates E2F-1, a new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci 124:3017–3028

    PubMed  CAS  Google Scholar 

  • Dönmez-Altuntaş H, Akalin H, Karaman Y, Demirtaş H, Imamoğlu N, Ozkul Y (2005) Evaluation of the nucleolar organizer regions in Alzheimer’s disease. Gerontology 51:297–301

    PubMed  Google Scholar 

  • Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H et al (1999) The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 21:169–175

    PubMed  CAS  Google Scholar 

  • Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP et al (2009) Anticancer activity of CX-3543, a direct inhibitor of rRNA biogenesis. Cancer Res 69:7653–7661

    PubMed  CAS  Google Scholar 

  • Drygin D, Lin A, Bliesath J, Ho CB, O’Brien SE, Proffitt C, Omori M, Haddach M, Schwaebe MK, Siddiqui-Jain A et al (2010a) Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res 71:1418–1430

    PubMed  Google Scholar 

  • Drygin D, Rice WG, Grummt I (2010b) The RNA polymerase I transcription machinery, an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50:131–156

    PubMed  CAS  Google Scholar 

  • Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berline N et al (2011) Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117:2567–2576

    PubMed  CAS  Google Scholar 

  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR et al (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339

    PubMed  CAS  Google Scholar 

  • Ernoult-Lange M, Wilczynska A, Harper M, Aigueperse C, Dautry F, Kress M, Weil D (2009) Nucleocytoplasmic traffic of CPEB1 and accumulation in Crm1 nucleolar bodies. Mol Biol Cell 20:176–187

    PubMed  CAS  Google Scholar 

  • Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16:807–816

    PubMed  CAS  Google Scholar 

  • Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction, implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528

    PubMed  CAS  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP, Thomas G (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11:501–508

    PubMed  CAS  Google Scholar 

  • Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fåhraeus R (2012) The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell 21:25–35

    PubMed  CAS  Google Scholar 

  • Ganesh S, Puri R, Singh S, Mittal S, Dubey D (2006) Recent advances in the molecular basis of Lafora’s progressive myoclonus epilepsy. J Hum Genet 51:1–8

    PubMed  CAS  Google Scholar 

  • Garyali P, Siwach P, Singh PK, Puri R, Mittal S, Sengupta S, Parihar R, Ganesh S (2009) The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum Mol Genet 18:688–700

    PubMed  CAS  Google Scholar 

  • Gilkes DM, Chen L, Chen J (2006) MDMX regulation of p53 response to ribosomal stress. EMBO J 25:5614–5625

    PubMed  CAS  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    PubMed  CAS  Google Scholar 

  • Goldberg AL (2007) Functions of the proteasome, from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35:12–17

    PubMed  CAS  Google Scholar 

  • Gudkov AV, Komarova EA (2010) Pathologies associated with the p53 response. Cold Spring Harb Perspect Biol 2:a001180

    PubMed  Google Scholar 

  • Hernandez-Verdun D (2006) Nucleolus, from structure to dynamics. Histochem Cell Biol 125:127–137

    PubMed  CAS  Google Scholar 

  • Hu J, Cai XF, Yan G (2009) Alphavirus M1 induces apoptosis of malignant glioma cells via downregulation and nucleolar translocation of p21WAF1/CIP1 protein. Cell Cycle 8:3328–3339

    PubMed  CAS  Google Scholar 

  • Huang Q, Figueiredo-Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration, therapeutic implications. Apoptosis 15:1292–1311

    PubMed  CAS  Google Scholar 

  • Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export, to the pore and beyond. Trends Cell Biol 17:193–201

    PubMed  CAS  Google Scholar 

  • Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, Troncoso JC (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67:578–589

    PubMed  Google Scholar 

  • Iadevaia V, Caldarola S, Biondini L, Gismondi A, Karlsson S, Dianzani I, Loren F (2010) PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression. Oncogene 29:5490–5499

    PubMed  CAS  Google Scholar 

  • Ikeda F, Dikic I (2008) Atypical ubiquitin chains, new molecular signals. ‘Protein modifications, beyond the usual suspects’ review series. EMBO Rep 9:536–542

    PubMed  CAS  Google Scholar 

  • Irwin S, Vandelft M, Pinchev D, Howell JL, Graczyk J, Orr HT, Truant R (2005) RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci 118:233–242

    PubMed  CAS  Google Scholar 

  • Jin A, Itahana K, O’Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24:7669–7680

    PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes, a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    PubMed  CAS  Google Scholar 

  • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors, from research tools to drug candidates. Chem Biol 8:739–758

    PubMed  CAS  Google Scholar 

  • van Koningsbruggen S, Straasheijm KR, Sterrenburg E, de Graaf N, Dauwerse HG, Frants RR, van der Maarel SM (2007) FRG1P-mediated aggregation of proteins involved in pre-mRNA processing. Chromosoma 116:53–64

    PubMed  CAS  Google Scholar 

  • Lam YW, Lamond AI, Mann M, Andersen JS (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760

    PubMed  CAS  Google Scholar 

  • Latonen L (2011) Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that accumulate several key factors of neurodegenerative diseases and cancer. Bioessays 33:386–395

    PubMed  CAS  Google Scholar 

  • Latonen L, Moore HM, Bai B, Jäämaa S, Laiho M (2011) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30:790–805

    PubMed  CAS  Google Scholar 

  • Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17:86–92

    PubMed  CAS  Google Scholar 

  • Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329–347

    PubMed  CAS  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination, differential control of p53 fate by Mdm2. Science 302:1972–1975

    PubMed  CAS  Google Scholar 

  • Li LB, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453:1107–1111

    PubMed  CAS  Google Scholar 

  • Li X, Zhang Y, Xie P, Piao J, Hu Y, Chang M, Liu T, Hu L (2010) Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI. BMC Neurosci 11:95

    PubMed  CAS  Google Scholar 

  • Lindstrom MS (2009) Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun 379:167–170

    PubMed  Google Scholar 

  • Lindstrom MS, Nister M (2010) Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One 5:e9578

    PubMed  Google Scholar 

  • Lindstrom MS, Deisenroth C, Zhang Y (2007a) Putting a finger on growth surveillance, insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle 6:434–437

    PubMed  CAS  Google Scholar 

  • Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y (2007b) Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 27:1056–1068

    PubMed  CAS  Google Scholar 

  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3:577–587

    PubMed  CAS  Google Scholar 

  • Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS, Zhang Y (2010) An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18:231–243

    PubMed  CAS  Google Scholar 

  • Mahata B, Sundqvist A, Xirodimas DP (2011) Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31:3060–3071

    PubMed  Google Scholar 

  • Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ (1994) The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 14:7414–7420

    PubMed  CAS  Google Scholar 

  • Matafora V, D’Amato A, Mori S, Blasi F, Bachi A (2009) Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 8:2243–2255

    PubMed  CAS  Google Scholar 

  • Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L (2001) Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci U S A 98:1012–1017

    PubMed  CAS  Google Scholar 

  • McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM et al (2008) Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 40:963–970

    PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS, Gius D, Neckers L (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 3:551–566

    PubMed  CAS  Google Scholar 

  • Mosesson Y, Yarden Y (2006) Monoubiquitylation, a recurrent theme in membrane protein transport. Isr Med Assoc J 8:233–237

    PubMed  CAS  Google Scholar 

  • Narla A, Ebert BL (2010) Ribosomopathies, human disorders of ribosome dysfunction. Blood 115:3196–3205

    PubMed  CAS  Google Scholar 

  • Navon A, Ciechanover A (2009) The 26 S proteasome, from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    PubMed  CAS  Google Scholar 

  • O’Hagan HM, Ljungman M (2004) Efficient NES-dependent protein nuclear export requires ongoing synthesis and export of mRNAs. Exp Cell Res 297:548–559

    PubMed  Google Scholar 

  • Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M (2008) Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32:180–189

    PubMed  CAS  Google Scholar 

  • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78

    PubMed  CAS  Google Scholar 

  • Pan W, Issaq S, Zhang Y (2011) The in vivo role of the RP-Mdm2-p53 pathway in signaling oncogenic stress induced by pRb inactivation and Ras overexpression. PLoS One 6:e21625

    PubMed  CAS  Google Scholar 

  • Panic L, Tamarut S, Sticker-Jantscheff M, Barkic M, Solter D, Uzelac M, Grabusic K, Volarevic S (2006) Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol 26:8880–8891

    PubMed  CAS  Google Scholar 

  • Perry RP, Kelley DE (1968) Persistent synthesis of 5S RNA when production of 28S and 18S ribosomal RNA is inhibited by low doses of actinomycin D. J Cell Physiol 72:235–246

    PubMed  CAS  Google Scholar 

  • Pestov DG, Strezoska Z, Lau LF (2001) Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle, effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 21:4246–4255

    PubMed  CAS  Google Scholar 

  • Reyes-Turcu FE, Wilkinson KD (2009) Polyubiquitin binding and disassembly by deubiquitinating enzymes. Chem Rev 109:1495–1508

    PubMed  CAS  Google Scholar 

  • Rieker C, Engblom D, Kreiner G, Domanskyi A, Schober A, Stotz S, Neumann M, Yuan X, Grummt I, Schütz G, Parlato R (2011) Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J Neurosci 31:453–460

    PubMed  CAS  Google Scholar 

  • Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M (2008) The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14:1918–1929

    PubMed  CAS  Google Scholar 

  • Rockel TD, Stuhlmann D, von Mikecz A (2005) Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 118:5231–5242

    PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    PubMed  CAS  Google Scholar 

  • Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL (2007) Huntington’s disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61:272–282

    PubMed  CAS  Google Scholar 

  • Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192

    PubMed  CAS  Google Scholar 

  • Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28:359–371

    PubMed  CAS  Google Scholar 

  • Salmena L, Pandolfi PP (2007) Changing venues for tumour suppression, balancing destruction and localization by monoubiquitylation. Nat Rev Cancer 7:409–413

    PubMed  CAS  Google Scholar 

  • Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR et al (2011) Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 17:944–951

    PubMed  CAS  Google Scholar 

  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S et al (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557

    PubMed  CAS  Google Scholar 

  • Schoser B, Timchenko L (2010) Myotonic dystrophies 1 and 2, complex diseases with complex mechanisms. Curr Genomics 11:77–90

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99

    PubMed  CAS  Google Scholar 

  • Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D (2008) Nucleolus, the fascinating nuclear body. Histochem Cell Biol 129:13–31

    PubMed  CAS  Google Scholar 

  • Sun XX, Dai MS, Lu H (2007) 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 282:8052–8059

    PubMed  CAS  Google Scholar 

  • Sun XX, Dai MS, Lu H (2008) Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 283:12387–12392

    PubMed  CAS  Google Scholar 

  • Sun XX, Wang YG, Xirodimas DP, Dai MS (2010) Perturbation of 60 S ribosomal biogenesis results in ribosomal protein L5- and L11-dependent p53 activation. J Biol Chem 285:25812–25821

    PubMed  CAS  Google Scholar 

  • Sun XX, DeVine T, Challagundla KB, Dai MS (2011) Interplay between ribosomal protein S27a and MDM2 protein in p53 activation in response to ribosomal stress. J Biol Chem 286:22730–22741

    PubMed  CAS  Google Scholar 

  • Sundqvist A, Liu G, Mirsaliotis A, Xirodimas DP (2009) Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 28:28

    Google Scholar 

  • Thomas F, Kutay U (2003) Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci 116:2409–2419

    PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light, the growing complexity of p53. Cell 137:413–431

    PubMed  CAS  Google Scholar 

  • Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    PubMed  CAS  Google Scholar 

  • White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, Wakamiya M, Edwards SF, Raskin S, Teive HA et al (2010) Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6:e1000984

    PubMed  Google Scholar 

  • Wilde IB, Brack M, Winget JM, Mayor T (2011) Proteomic characterization of aggregating proteins after the inhibition of the ubiquitin proteasome system. J Proteome Res 10:1062–1072

    PubMed  CAS  Google Scholar 

  • Wójcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589

    PubMed  Google Scholar 

  • Xiong X, Zhao Y, He H, Sun Y (2011) Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 30:1798–1811

    PubMed  CAS  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    PubMed  CAS  Google Scholar 

  • Yadavilli S, Mayo LD, Higgins M, Lain S, Hegd V, Deutsch WA (2009) Ribosomal protein S3, a multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst) 3:3

    Google Scholar 

  • Yue S, Serra HG, Zoghbi HY, Orr HT (2001) The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet 10:25–30

    PubMed  CAS  Google Scholar 

  • Zander C, Takahashi J, El Hachimi KH, Fujigasaki H, Albanese V, Lebre AS, Stevanin G, Duyckaerts C, Brice A (2001) Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain, proteins recruited in inclusions and activation of caspase-3. Hum Mol Genet 10:2569–2579

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lu H (2009) Signaling to p53, ribosomal proteins find their way. Cancer Cell 16:369–377

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23:8902–8912

    PubMed  CAS  Google Scholar 

  • Zhang Q, Xiao H, Chai SC, Hoang QQ, Lu H (2011) Hydrophilic residues are crucial for ribosomal protein L11 (RPL11) interaction with zinc finger domain of MDM2 and p53 protein activation. J Biol Chem 286:38264–38274

    PubMed  CAS  Google Scholar 

  • Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X, Prives C (2009) Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 35:316–326

    PubMed  CAS  Google Scholar 

  • Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The original work of LL related to this subject was supported by the Finnish Academy (grant no. 108828). Prof. Tapio Visakorpi for his kind support to LL. Research on the nucleolus and ribosomal proteins in the ML project group is supported by the Swedish Research Council, project number K2012-99X-2969-01-3, and the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Latonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lindström, M.S., Latonen, L. (2013). The Nucleolus as a Stress Response Organelle. In: O'Day, D., Catalano, A. (eds) Proteins of the Nucleolus. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5818-6_11

Download citation

Publish with us

Policies and ethics