Skip to main content

Clinical Bioinformatics in Human Proteomics Research

  • Chapter
  • First Online:
Bioinformatics of Human Proteomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 3))

  • 2530 Accesses

Abstract

Proteome analysis has rapidly developed in the post-genome era and is now widely accepted as a complementary technology to genetic profiling. The improvement in the technology of both two-dimensional electrophoresis (2-DE) analysis as well as quantitative iTRAQ has made proteomics a valuable and powerful tool to study human diseases. Clinical bioinformatics, emerging science combining clinical informatics, bioinformatics, medical informatics, information technology, mathematics, and omics science together, can be considered to be one of critical elements addressing clinical relevant challenges in early diagnosis, efficient therapies, and predictive prognosis of patients with disease. A combination of proteome analysis with clinical bioinformatics has been developed as a promising experimental approach for the identification of diagnostic and prognostic markers and so on, suggesting that proteome-based analysis is a promising tool for the identification of prognostic and diagnostic markers as well as for novel therapeutic targets which could be used for the treatment of diseases. The integration of proteome-based approaches with data from genomic or genetic profiling will lead to a better understanding of different diseases, which will then contribute to the direct translation of the research findings into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 2003;3(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  • Bonneau R. Learning biological networks: from modules to dynamics. Nat Chem Biol. 2008;4(11):658–64.

    Article  PubMed  CAS  Google Scholar 

  • Chang PL. Clinical bioinformatics. Chang Gung Med J. 2005;28(4):201–11.

    PubMed  Google Scholar 

  • Chen H, Song Z, Qian M, Bai C, Wang X. Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. J Cell Mol Med. 2012;16(6):1286–97.

    Article  PubMed  CAS  Google Scholar 

  • Dietel M, Schafer R. Systems pathology – or how to solve the complex problem of predictive pathology. Virchows Arch. 2008;453(4):309–12.

    Article  PubMed  Google Scholar 

  • Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteomics. 2007;4(2):239–48.

    Article  PubMed  CAS  Google Scholar 

  • Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Qian L, Bittner ML, Dougherty ER. A systems biology approach in therapeutic response study for different dosing regimens-a modeling study of drug effects on tumor growth using hybrid systems. Cancer Inform. 2012;11:41–60.

    PubMed  CAS  Google Scholar 

  • Logan JA, Kelly ME, Ayers D, Shipillis N, Baier G, Day PJ. Systems biology and modeling in neuroblastoma: practicalities and perspectives. Expert Rev Mol Diagn. 2010;10(2):131–45.

    Article  PubMed  Google Scholar 

  • Long PM, Stradecki HM, Minturn JE, Wesley UV, Jaworski DM. Differential aminoacylase expression in neuroblastoma. Int J Cancer Journal international du cancer. 2011;129(6):1322–30.

    Article  CAS  Google Scholar 

  • Matharoo-Ball B, Ball G, Rees R. Clinical proteomics: discovery of cancer biomarkers using mass spectrometry and bioinformatics approaches – a prostate cancer perspective. Vaccine. 2007;25 Suppl 2:B110–21.

    Article  PubMed  CAS  Google Scholar 

  • Munshi NC, Avet-Loiseau H. Genomics in multiple myeloma. Clinical Cancer Res. 2011;17(6):1234–42.

    Article  CAS  Google Scholar 

  • Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.

    Article  PubMed  Google Scholar 

  • Nicholson RL, Welch M, Ladlow M, Spring DR. Small-molecule screening: advances in microarraying and cell-imaging technologies. ACS Chem Biol. 2007;2(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  • Parisi F, Ariyan S, Narayan D, Bacchiocchi A, Hoyt K, Cheng E, Xu F, Li P, Halaban R, Kluger Y. Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies. BMC Genomics. 2011;12:230.

    Article  PubMed  Google Scholar 

  • Pavlou MP, Diamandis EP. The cancer cell secretome: a good source for discovering biomarkers? J Proteomics. 2010;73(10):1896–906.

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Valencia A. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng. 2001;14(9):609–14.

    Article  PubMed  CAS  Google Scholar 

  • Qiu FM, Yu JK, Chen YD, Jin QF, Sui MH, Huang J. Mining novel biomarkers for prognosis of gastric cancer with serum proteomics. J Exp Clin Cancer Res. 2009;28:126.

    Article  PubMed  Google Scholar 

  • Radmacher MD, McShane LM, Simon R. A paradigm for class prediction using gene expression profiles. J Comput Biol. 2002;9(3):505–11.

    Article  PubMed  CAS  Google Scholar 

  • Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, Hill DA, Hwang E, Kilburn L, Packer RJ, Nazarian J. Insights into pediatric diffuse intrinsic pontine glioma through proteomic analysis of cerebrospinal fluid. Neuro Oncol. 2012;14(5):547–60.

    Article  PubMed  CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51.

    Article  PubMed  CAS  Google Scholar 

  • Shi XJ, Geng F, Jiao Z, Cui XY, Qiu XY, Zhong MK. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis. J Clin Pharm Ther. 2011;36(5):614–24.

    Article  PubMed  CAS  Google Scholar 

  • Simon R. Diagnostic and prognostic prediction using gene expression profiles in high-dimensional microarray data. Br J Cancer. 2003;89(9):1599–604.

    Article  PubMed  CAS  Google Scholar 

  • Simon R. The use of genomics in clinical trial design. Clin Cancer Res. 2008;14(19):5984–93.

    Article  PubMed  Google Scholar 

  • Sparkman OD. Review of the 48th ASMS conference on mass spectrometry and allied topics held in Long Beach, California June 11–15, 2000. J Am Soc Mass Spectrom. 2000;11(10):921.

    Article  PubMed  CAS  Google Scholar 

  • Teitz T, Stanke JJ, Federico S, Bradley CL, Brennan R, Zhang J, Johnson MD, Sedlacik J, Inoue M, Zhang ZM, et al. Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One. 2011;6(4):e19133.

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Miernyk JA. The proteomic future: where mass spectrometry should be taking us. Biochem J. 2012;444(2):169–81.

    Article  PubMed  CAS  Google Scholar 

  • Vitucci M, Hayes DN, Miller CR. Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. Br J Cancer. 2011;104(4):545–53.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liotta L. Clinical bioinformatics: a new emerging science. J Clin Bioinformatics. 2011;1(1):1.

    Article  Google Scholar 

  • West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson Jr JA, Marks JR, Nevins JR. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A. 2001;98(20):11462–7.

    Article  PubMed  CAS  Google Scholar 

  • Williams C, Brunskill S, Altman D, Briggs A, Campbell H, Clarke M, Glanville J, Gray A, Harris A, Johnston K, et al. Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy. Health Technol Assess. 2006;10(34):iii–iv. ix–xi, 1–204.

    Google Scholar 

  • Xiang Y, Liu Y, Lee ML. Ultrahigh pressure liquid chromatography using elevated temperature. J Chromatogr A. 2006;1104(1–2):198–202.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Skolnick J. The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A. 2005;102(4):1029–34.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol. 2012;52:505–21.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Gallo JM. The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J. 2011;13(1):111–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, D., Li, H., Wang, X. (2013). Clinical Bioinformatics in Human Proteomics Research. In: Wang, X. (eds) Bioinformatics of Human Proteomics. Translational Bioinformatics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5811-7_1

Download citation

Publish with us

Policies and ethics