Skip to main content

Redox Proteomics

  • Chapter
  • First Online:
Oxidative Stress and Redox Regulation

Abstract

In the presence of oxidative and nitrosative stress, proteins can undergo oxidative modification. A large variety of such modifications have been identified to date, including carbonylation, oxidation of aromatic amino acids, methionine sulfoxidation, and cysteine oxidation. While unintended oxidative modifications most often lead to the damage of the affected proteins, oxidative modifications also play important roles in cellular redox sensing. Classical redox sensor proteins use reversible oxidative modifications to change their activity in response to a changing redox environment. These redox sensors are the focus of oxidative stress research and have been identified in all three kingdoms of life. They are involved in a wide variety of cellular processes ranging from central energy metabolism over protein quality control to the regulation of the oxidative stress response. Proteomic methods have been used to globally monitor the oxidation state of these redox sensors and to identify novel redox sensitive proteins. These methods can help us in understanding redox regulation and the role of protein oxidation under physiological and pathological conditions. In this chapter, we will provide an overview of the different oxidation products of amino acid side chains in proteins, discuss examples of their physiological relevance and present a selection of global methods to identify them. We put an emphasis on quantitative proteomic methods that are able to identify targets of oxidative modifications down to the amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238

    CAS  PubMed  Google Scholar 

  • Abulimiti A, Qiu X, Chen J et al (2003) Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants. Biochem Biophys Res Commun 305:87–93

    CAS  PubMed  Google Scholar 

  • Agbas A, Moskovitz J (2009) The role of methionine oxidation/reduction in the regulation of immune response. Curr Signal Transduct Ther 4:46–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527

    CAS  PubMed  Google Scholar 

  • Alamuri P, Maier RJ (2006) Methionine sulfoxide reductase in Helicobacter pylori: interaction with methionine-rich proteins and stress-induced expression. J Bacteriol 188:5839–5850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrova ML, Bochev PG (2005) Oxidative stress during the chronic phase after stroke. Free Radic Biol Med 39:297–316

    CAS  PubMed  Google Scholar 

  • Anderson LB, Maderia M, Ouellette AJA et al (2002) Posttranslational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci USA 99:14676–14681

    CAS  PubMed  Google Scholar 

  • Beal MF, Ferrante RJ, Browne SE et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654

    CAS  PubMed  Google Scholar 

  • Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703:121–134

    CAS  PubMed  Google Scholar 

  • Bindoli A, Fukuto JM, Forman HJ (2008) Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10:1549–1564

    CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    CAS  PubMed  Google Scholar 

  • Bochner BR, Lee PC, Wilson SW et al (1984) AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37:225–232

    CAS  PubMed  Google Scholar 

  • Boileau C, Eme L, Brochier-Armanet C et al (2011) A eukaryotic-like sulfiredoxin involved in oxidative stress responses and in the reduction of the sulfinic form of 2-Cys peroxiredoxin in the cyanobacterium Anabaena PCC 7120. New Phytol 191:1108–1118

    CAS  PubMed  Google Scholar 

  • Bollineni RC, Hoffmann R, Fedorova M (2011) Identification of protein carbonylation sites by two-dimensional liquid chromatography in combination with MALDI- and ESI-MS. J Proteomics 74:2338–2350

    CAS  PubMed  Google Scholar 

  • Brandes N, Reichmann D, Tienson H et al (2011) Using quantitative redox proteomics to dissect the yeast redoxome. J Biol Chem 286:41893–41903

    CAS  PubMed  Google Scholar 

  • Brennan JP, Miller JIA, Fuller W et al (2006) The utility of N, N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5:215–225

    CAS  PubMed  Google Scholar 

  • Bridgewater JD, Srikanth R, Lim J, Vachet RW (2007) The effect of histidine oxidation on the dissociation patterns of peptide ions. J Am Soc Mass Spectrom 18:553–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philos Trans R Soc Lond B Biol Sci 363:2731–2743

    CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Rizzarelli E et al (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    CAS  PubMed  Google Scholar 

  • Chae HZ, Uhm TB, Rhee SG (1994) Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci USA 91:7022–7026

    CAS  PubMed  Google Scholar 

  • Chai YC, Jung CH, Lii CK et al (1991) Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys 284:270–278

    CAS  PubMed  Google Scholar 

  • Chambers DE, Parks DA, Patterson G et al (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152

    CAS  PubMed  Google Scholar 

  • Chan H-L, Gharbi S, Gaffney PR et al (2005) Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics 5:2908–2926

    CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    CAS  PubMed  Google Scholar 

  • Chang T-S, Jeong W, Woo HA et al (2004) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001

    CAS  PubMed  Google Scholar 

  • Chang Y-C, Huang C-N, Lin C-H et al (2010) Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. Proteomics 10:2961–2971

    CAS  PubMed  Google Scholar 

  • Cheal SM, Ng M, Barrios B et al (2009) Mapping protein-protein interactions by localized oxidation: consequences of the reach of hydroxyl radical. Biochemistry 48:4577–4586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappetta G, Corbo C, Palmese A et al (2009) Quantitative identification of protein nitration sites. Proteomics 9:1524–1537

    CAS  PubMed  Google Scholar 

  • Ciorba MA, Heinemann SH, Weissbach H et al (1997) Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci USA 94:9932–9937

    CAS  PubMed  Google Scholar 

  • Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253:8433–8443

    CAS  PubMed  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  Google Scholar 

  • Dai D-F, Johnson SC, Villarin JJ et al (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalle-Donne I, Giustarini D, Colombo R et al (2003a) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D et al (2003b) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M et al (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D et al (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898

    CAS  PubMed  Google Scholar 

  • Darby N, Creighton TE (1995) Disulfide bonds in protein folding and stability. Methods Mol Biol 40:219–252

    CAS  PubMed  Google Scholar 

  • Depuydt M, Leonard SE, Vertommen D et al (2009) A periplasmic reducing system protects single cysteine residues from oxidation. Science 326:1109–1111

    CAS  PubMed  Google Scholar 

  • Depuydt M, Messens J, Collet J-F (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15:49–66

    CAS  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 973:488–504

    CAS  PubMed  Google Scholar 

  • Donoghue PCJ, Antcliffe JB (2010) Early life: origins of multicellularity. Nature 466:41–42

    CAS  PubMed  Google Scholar 

  • Dremina ES, Li X, Galeva NA et al (2011) A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides. Anal Biochem 418:184–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorova M, Kuleva N, Hoffmann R (2010) Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J Proteome Res 9:1598–1609

    CAS  PubMed  Google Scholar 

  • Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257

    CAS  PubMed  Google Scholar 

  • Fu S, Dean R, Southan M, Truscott R (1998) The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem 273:28603–28609

    CAS  PubMed  Google Scholar 

  • Ghesquière B, Jonckheere V, Colaert N et al (2011) Redox proteomics of protein-bound methionine oxidation. Mol Cell Proteomics 10:M110.006866

    PubMed  Google Scholar 

  • Ghezzi P, Bonetto V, Fratelli M (2005) Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972

    CAS  PubMed  Google Scholar 

  • Giles NM, Watts AB, Giles GI et al (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10:677–693

    CAS  PubMed  Google Scholar 

  • Giustarini D, Dalle-Donne I, Colombo R et al (2008) Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide 19:252–258

    CAS  PubMed  Google Scholar 

  • Godon C, Lagniel G, Lee J et al (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    CAS  PubMed  Google Scholar 

  • Gross AJ, Sizer IW (1959) The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J Biol Chem 234:1611–1614

    CAS  PubMed  Google Scholar 

  • Gross E, Sevier CS, Heldman N et al (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA 103:299–304

    CAS  PubMed  Google Scholar 

  • Grosvenor AJ, Morton JD, Dyer JM (2010) Profiling of residue-level photo-oxidative damage in peptides. Amino Acids 39:285–296

    CAS  PubMed  Google Scholar 

  • Grune T, Davies KJ (1997) Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells. Biofactors 6:165–172

    CAS  PubMed  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    CAS  PubMed  Google Scholar 

  • Guan J-Q, Chance MR (2005) Structural proteomics of macromolecular assemblies using oxidative footprinting and mass spectrometry. Trends Biochem Sci 30:583–592

    CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Harris I, Meriwether BP, Park JH (1963) Chemical nature of the catalytic sites in glyceraldehyde-3-phosphate dehydrogenase. Nature 198:154–157

    CAS  PubMed  Google Scholar 

  • Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859

    CAS  PubMed  Google Scholar 

  • Hochgräfe F, Mostertz J, Albrecht D, Hecker M (2005) Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis. Mol Microbiol 58:409–425

    PubMed  Google Scholar 

  • Hochgräfe F, Mostertz J, Pöther D-C et al (2007) S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 282:25981–25985

    PubMed  Google Scholar 

  • Hofmann B, Hecht H-J, Flohé L (2002) Peroxiredoxins. Biol Chem 383:347–364

    CAS  PubMed  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  • Hondorp ER, Matthews RG (2004) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLOS Biol 2:e336

    PubMed  PubMed Central  Google Scholar 

  • Huang B, Liao CL, Lin YP et al (2009) S-nitrosoproteome in endothelial cells revealed by a modified biotin switch approach coupled with Western blot-based two-dimensional gel electrophoresis. J Proteome Res 8:4835–4843

    CAS  PubMed  Google Scholar 

  • Hurd TR, Prime TA, Harbour ME et al (2007) Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling. J Biol Chem 282:22040–22051

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H, al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    CAS  PubMed  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J et al (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    CAS  PubMed  Google Scholar 

  • Ito S, Kato T, Shinpo K, Fujita K (1984) Oxidation of tyrosine residues in proteins by tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-dihydroxyphenylalanine. Biochem J 222:407–411

    CAS  PubMed  Google Scholar 

  • Ivanov B, Khorobrykh S (2003) Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species. Antioxid Redox Signal 5:43–53

    CAS  PubMed  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1

    CAS  PubMed  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JC (1999) Chaperone activity with a redox switch. Cell 96:341–352

    CAS  PubMed  Google Scholar 

  • Janssen-Heininger YMW, Mossman BT, Heintz NH et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res 3:23–35

    CAS  PubMed  Google Scholar 

  • Klomsiri C, Nelson KJ, Bechtold E et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol 473:77–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumsta C, Thamsen M, Jakob U (2011) Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans. Antioxid Redox Signal 14:1023–1037

    CAS  PubMed  Google Scholar 

  • Kuthan H, Ullrich V (1982) Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur J Biochem 126:583–588

    CAS  PubMed  Google Scholar 

  • Landino LM, Koumas MT, Mason CE, Alston JA (2006) Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem Biophys Res Commun 340:347–352

    CAS  PubMed  Google Scholar 

  • Lee J-W, Helmann JD (2006) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367

    CAS  PubMed  Google Scholar 

  • Lee S, Young NL, Whetstone PA et al (2006) Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. J Proteome Res 5:539–547

    CAS  PubMed  Google Scholar 

  • Lee J-W, Soonsanga S, Helmann JD (2007) A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci USA 104:8743–8748

    CAS  PubMed  Google Scholar 

  • Lee S, Chen Y, Luo H et al (2010) The first global screening of protein substrates bearing protein-bound 3,4-Dihydroxyphenylalanine in Escherichia coli and human mitochondria. J Proteome Res 9:5705–5714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leeuwenburgh C, Rasmussen JE, Hsu FF et al (1997) Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 272:3520–3526

    CAS  PubMed  Google Scholar 

  • Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PLOS Biol 2:e333

    PubMed  PubMed Central  Google Scholar 

  • Leichert LI, Gehrke F, Gudiseva HV et al (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci USA 105:8197–8202

    CAS  PubMed  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    CAS  PubMed  Google Scholar 

  • Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93:15036–15040

    CAS  PubMed  Google Scholar 

  • Levine RL, Moskovitz J, Stadtman ER (2000) Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life 50:301–307

    CAS  PubMed  Google Scholar 

  • Li S, Wang H, Xian M, Whorton AR (2011) Identification of protein nitrosothiols using phosphine-mediated selective reduction. Nitric Oxide 26:20–26

    PubMed  PubMed Central  Google Scholar 

  • Lind C, Gerdes R, Schuppe-Koistinen I, Cotgreave IA (1998) Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin. Biochem Biophys Res Commun 247:481–486

    CAS  PubMed  Google Scholar 

  • Lind C, Gerdes R, Hamnell Y et al (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406:229–240

    CAS  PubMed  Google Scholar 

  • Lindahl M, Mata-Cabana A, Kieselbach T (2011) The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 14:2581–2642

    CAS  PubMed  Google Scholar 

  • Loschen G, Flohé L, Chance B (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18:261–264

    CAS  PubMed  Google Scholar 

  • Madian AG, Regnier FE (2010) Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res 9:3766–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maria CS, Revilla E, Ayala A et al (1995) Changes in the histidine residues of Cu/Zn superoxide dismutase during aging. FEBS Lett 374:85–88

    CAS  PubMed  Google Scholar 

  • Maskos Z, Rush JD, Koppenol WH (1992) The hydroxylation of phenylalanine and tyrosine: a comparison with salicylate and tryptophan. Arch Biochem Biophys 296:521–529

    CAS  PubMed  Google Scholar 

  • Matayatsuk C, Poljak A, Bustamante S et al (2007) quantitative determination of ortho- and meta-tyrosine as biomarkers of protein oxidative damage in β-thalassemia. Redox Rep 12:219–228

    CAS  PubMed  Google Scholar 

  • Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399

    CAS  PubMed  Google Scholar 

  • Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392

    CAS  PubMed  Google Scholar 

  • Mirzaei H, Regnier F (2006) Enrichment of carbonylated peptides using Girard P reagent and strong cation exchange chromatography. Anal Chem 78:770–778

    CAS  PubMed  Google Scholar 

  • Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17:1232–1239

    CAS  PubMed  Google Scholar 

  • Møller IM, Kristensen BK (2006) Protein oxidation in plant mitochondria detected as oxidized tryptophan. Free Radic Biol Med 40:430–435

    PubMed  Google Scholar 

  • Moskovitz J, Rahman MA, Strassman J et al (1995) Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol 177:502–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 94:9585–9589

    CAS  PubMed  Google Scholar 

  • Moskovitz J, Flescher E, Berlett BS et al (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA 95:14071–14075

    CAS  PubMed  Google Scholar 

  • Murray CI, Uhrigshardt H, O’Meally RN et al (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass Tag switch assay. Mol Cell Proteomics 11(2):M111.013441

    PubMed  Google Scholar 

  • Nakagawa M, Watanabe H, Kodato S et al (1977) A valid model for the mechanism of oxidation of tryptophan to formylkynurenine-25 years later. Proc Natl Acad Sci USA 74:4730–4733

    CAS  PubMed  Google Scholar 

  • Nakamura A, Goto S (1996) Analysis of protein carbonyls with 2,4-dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J Biochem 119:768–774

    CAS  PubMed  Google Scholar 

  • Nyström T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    PubMed  Google Scholar 

  • Ogawa O, Zhu X, Perry G, Smith MA (2002) Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease. Sci Aging Knowledge Environ 2002:pe16

    PubMed  Google Scholar 

  • Oien DB, Osterhaus GL, Latif SA et al (2008) MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels. Free Radic Biol Med 45:193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perdivara I, Deterding LJ, Przybylski M, Tomer KB (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification? J Am Soc Mass Spectrom 21:1114–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poole LB, Zeng B-B, Knaggs SA et al (2005) Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjug Chem 16:1624–1628

    CAS  PubMed  Google Scholar 

  • Proctor P, McGinness JE (1970) Levodopa side-effects and the Lesch-Nyhan syndrome. Lancet 2:1367

    CAS  PubMed  Google Scholar 

  • Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    CAS  PubMed  Google Scholar 

  • Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    PubMed  PubMed Central  Google Scholar 

  • Ravichandran V, Seres T, Moriguchi T et al (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    CAS  PubMed  Google Scholar 

  • Reddie KG, Seo YH, Muse Iii WB et al (2008) A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol Biosyst 4:521–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichard P, Ehrenberg A (1983) Ribonucleotide reductase–a radical enzyme. Science 221:514–519

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Körn S, Möhring S et al (2000) Adaptation of protein carbonyl detection to the requirements of proteome analysis demonstrated for hypoxia/reoxygenation in isolated rat liver mitochondria. Arch Biochem Biophys 376:59–65

    CAS  PubMed  Google Scholar 

  • Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59:3781–3801

    CAS  PubMed  Google Scholar 

  • Rinna A, Torres M, Forman HJ (2006) Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radic Biol Med 41:86–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan H, Tang XD, Chen M-L et al (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748–2753

    CAS  PubMed  Google Scholar 

  • Sabens Liedhegner EA, Gao XH, Mieyal JJ (2012) Mechanisms of altered redox regulation in neurodegenerative diseases–focus on S-glutathionylation. Antioxid Redox Signal 16(6): 543–566

    Google Scholar 

  • Salsbury FR, Knutson ST, Poole LB, Fetrow JS (2008) Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci 17:299–312

    CAS  PubMed  Google Scholar 

  • Sato S, Shimoda Y, Muraki A et al (2007) A large-scale protein protein interaction analysis in Synechocystis sp. PCC6803. DNA Res 14:207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sethuraman M, McComb ME, Huang H et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3:1228–1233

    CAS  PubMed  Google Scholar 

  • Sharov V, Dremina E, Pennington J (2008) Selective fluorogenic derivatization of 3-nitrotyrosine and 3,4-dihydroxyphenylalanine in peptides: a method designed for quantitative proteomic analysis. Methods Enzymol 441:19–32

    CAS  PubMed  Google Scholar 

  • Sharov VS, Dremina ES, Galeva NA et al (2010) Fluorogenic tagging of peptide and protein 3-nitrotyrosine with 4-(aminomethyl)-benzenesulfonic acid for quantitative analysis of protein tyrosine nitration. Chroma 71:37–53

    CAS  Google Scholar 

  • Sheehan D, McDonagh B, Bárcena JA (2010) Redox proteomics. Expert Rev Proteomics 7:1–4

    CAS  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    CAS  PubMed  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631

    CAS  PubMed  Google Scholar 

  • Simpson JA, Narita S, Gieseg S et al (1992) Long-lived reactive species on free-radical-damaged proteins. Biochem J 282:621–624

    CAS  PubMed  Google Scholar 

  • Simpson JA, Gieseg SP, Dean RT (1993) Free radical and enzymatic mechanisms for the generation of protein bound reducing moieties. Biochim Biophys Acta 1156:190–196

    CAS  PubMed  Google Scholar 

  • Staal FJ, Roederer M, Herzenberg LA, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947

    CAS  PubMed  Google Scholar 

  • Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    CAS  PubMed  Google Scholar 

  • Stamler JS, Jaraki O, Osborne J et al (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89:7674–7677

    CAS  PubMed  Google Scholar 

  • Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194

    CAS  PubMed  Google Scholar 

  • Sun H, Gao J, Ferrington DA et al (1999) Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38:105–112

    CAS  PubMed  Google Scholar 

  • Tarrago L, Kieffer-Jaquinod S, Lamant T et al (2011) Affinity chromatography: a valuable strategy to isolate substrates of methionine sulfoxide reductases? Antioxid Redox Signal 16:79–84

    PubMed  Google Scholar 

  • Taylor SW, Fahy E, Murray J et al (2003a) Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem 278:19587–19590

    CAS  PubMed  Google Scholar 

  • Taylor SW, Fahy E, Zhang B et al (2003b) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    CAS  PubMed  Google Scholar 

  • Tsikas D (2010) Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 42:45–63

    PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol (Lond) 552:335–344

    CAS  Google Scholar 

  • Uchida K, Kawakishi S (1993) 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett 332:208–210

    CAS  PubMed  Google Scholar 

  • van der Vliet A, O’Neill CA, Halliwell B et al (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett 339:89–92

    PubMed  Google Scholar 

  • van Dooren SHJ, Raijmakers R, Pluk H et al (2011) Oxidative stress-induced modifications of histidyl-tRNA synthetase affect its tRNA aminoacylation activity but not its immunoreactivity. Biochem Cell Biol 89:545–553

    PubMed  Google Scholar 

  • Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105

    CAS  PubMed  Google Scholar 

  • Weissbach H, Resnick L, Brot N (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703:203–212

    CAS  PubMed  Google Scholar 

  • Wolff J, Cook GH, Goldhammer AR, Berkowitz SA (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 77:3841–3844

    CAS  PubMed  Google Scholar 

  • Wong CM, Cheema AK, Zhang L, Suzuki YJ (2008) Protein carbonylation as a novel mechanism in redox signaling. Circ Res 102:310–318

    CAS  PubMed  Google Scholar 

  • Woo HA, Jeong W, Chang T-S et al (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128

    CAS  PubMed  Google Scholar 

  • Wood ZA, Schröder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    CAS  PubMed  Google Scholar 

  • Woods AA, Linton SM, Davies MJ (2003) Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J 370:729–735

    CAS  PubMed  Google Scholar 

  • Yao Y, Yin D, Jas GS et al (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    CAS  PubMed  Google Scholar 

  • Zaffagnini M, Michelet L, Marchand C et al (2007) The thioredoxin-independent isoform of chloroplastic glyceraldehyde-3-phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS J 274:212–226

    CAS  PubMed  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars I. Leichert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, A., Leichert, L.I. (2013). Redox Proteomics. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_6

Download citation

Publish with us

Policies and ethics