Skip to main content

Oxidative Stress in Infectious Diseases

  • Chapter
  • First Online:
Oxidative Stress and Redox Regulation
  • 2983 Accesses

Abstract

The “big three” infectious diseases HIV/AIDS, tuberculosis, and malaria were collectively responsible for nearly 260 million infected people in 2010. HIV, Mycobacterium tuberculosis, and Plasmodium falciparum, the causative agents of AIDS, tuberculosis, and malaria, are continuously exposed to reactive oxygen and nitrogen species endogenously produced or derived from the host immune system in response to infection. Oxidative stress has a key function in the pathogenesis of many infectious diseases, and represents moreover a promising strategy for chemotherapeutic development. Understanding the redox interactions and redox signaling mechanisms of pathogens and their hosts is crucial for developing (1) drugs that support the host antioxidant defense in order to protect cells from oxidative damage, (2) drugs that enhance specific reactive oxygen or nitrogen species to improve the host defense against pathogens, and (3) drugs that interfere with the redox system of the pathogen in order to block its growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AhpC:

alkyl hydroperoxide reductase

AIDS:

acquired immunodeficiency syndrome

AOP:

antioxidant protein

ASK:

apoptosis signal-regulating kinase

G6PD:

glucose 6-phosphate dehydrogenase

GR:

glutathione reductase

GST:

glutathione S-transferase

gp120:

glycoprotein 120

Grx:

glutaredoxin

GSH:

reduced glutathione

GSSG:

oxidized glutathione

HAART:

highly active anti-retroviral therapy

HIV:

human immunodeficiency virus

KatG:

catalase-peroxidase

iNOS:

nitric oxide synthase

LTR:

long terminal repeat

Mca:

mycothiol S-conjugate amidase

MscR:

mycothiol-S-nitrosoreductase/-formaldehyde reductase

MSH:

mycothiol

MSNO:

S-nitrosomycothiol

MSSM:

mycothiol disulfide

Msr:

methionine sulfoxide reductases

Mtr:

mycothiol reductase

NAC:

N-acetylcysteine

NFκB:

nuclear factor κB

NO:

nitric oxide

NOX:

NADPH oxidase

nPrx:

nuclear peroxiredoxin

Plrx:

plasmoredoxin

Prx:

peroxiredoxin

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SOD:

superoxide dismutase

Tat:

transactivator protein

TNF:

tumor necrosis factor

TPx:

thioredoxin peroxidase

Trx:

thioredoxin

TrxR:

thioredoxin reductase

References

  • Adams LB, Dinauer MC, Morgenstern DE, Krahenbuhl JL (1997) Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber Lung Dis 78:237–246

    CAS  PubMed  Google Scholar 

  • Agrawal L, Louboutin JP, Strayer DS (2007) Preventing HIV-1 Tat-induced neuronal apoptosis using antioxidant enzymes: mechanistic and therapeutic implications. Virology 363:462–472

    CAS  PubMed  Google Scholar 

  • Akif M, Khare G, Tyagi AK, Mande SC, Sardesai AA (2008) Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. J Bacteriol 190:7087–7095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Arnelle DR, Hollis D, McDonald MI, Granger DL (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567

    CAS  PubMed  Google Scholar 

  • Aquaro S, Muscoli C, Ranazzi A, Pollicita M, Granato T, Masuelli L, Modesti A, Perno CF, Mollace V (2007) The contribution of peroxynitrite generation in HIV replication in human primary macrophages. Retrovirology 4:76

    PubMed  Google Scholar 

  • Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78:89–142

    CAS  PubMed  Google Scholar 

  • Argyrou A, Vetting MW, Blanchard JS (2004) Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis. J Biol Chem 279:52694–52702

    CAS  PubMed  Google Scholar 

  • Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    CAS  PubMed  Google Scholar 

  • Atamna H, Ginsburg H (1993) Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Mol Biochem Parasitol 61:231–241

    CAS  PubMed  Google Scholar 

  • Atamna H, Ginsburg H (1997) The malaria parasite supplies glutathione to its host cell–investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem 250:670–679

    CAS  PubMed  Google Scholar 

  • Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine – a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359

    CAS  PubMed  Google Scholar 

  • Attarian R, Bennie C, Bach H, Av-Gay Y (2009) Glutathione disulfide and S-nitrosoglutathione detoxification by Mycobacterium tuberculosis thioredoxin system. FEBS Lett 583:3215–3220

    CAS  PubMed  Google Scholar 

  • Aukrust P, Svardal AM, Muller F, Lunden B, Berge RK, Ueland PM, Froland SS (1995) Increased levels of oxidized glutathione in CD4+ lymphocytes associated with disturbed intracellular redox balance in human immunodeficiency virus type 1 infection. Blood 86:258–267

    CAS  PubMed  Google Scholar 

  • Auwerx J, Isacsson O, Soderlund J, Balzarini J, Johansson M, Lundberg M (2009) Human glutaredoxin-1 catalyzes the reduction of HIV-1 gp120 and CD4 disulfides and its inhibition reduces HIV-1 replication. Int J Biochem Cell Biol 41:1269–1275

    CAS  PubMed  Google Scholar 

  • Azimi I, Matthias LJ, Center RJ, Wong JW, Hogg PJ (2010) Disulfide bond that constrains the HIV-1 gp120 V3 domain is cleaved by thioredoxin. J Biol Chem 285:40072–40080

    CAS  PubMed  Google Scholar 

  • Banki K, Hutter E, Gonchoroff NJ, Perl A (1998) Molecular ordering in HIV-induced apoptosis. Oxidative stress, activation of caspases, and cell survival are regulated by transaldolase. J Biol Chem 273:11944–11953

    CAS  PubMed  Google Scholar 

  • Becker K, Gromer S, Schirmer RH, Muller S (2000) Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem 267:6118–6125

    CAS  PubMed  Google Scholar 

  • Becker K, Kanzok SM, Iozef R, Fischer M, Schirmer RH, Rahlfs S (2003a) Plasmoredoxin, a novel redox-active protein unique for malarial parasites. Eur J Biochem 270:1057–1064

    CAS  PubMed  Google Scholar 

  • Becker K, Rahlfs S, Nickel C, Schirmer RH (2003b) Glutathione – functions and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 384:551–566

    CAS  PubMed  Google Scholar 

  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    CAS  PubMed  Google Scholar 

  • Belding ME, Klebanoff SJ, Ray CG (1970) Peroxidase-mediated virucidal systems. Science 167:195–196

    CAS  PubMed  Google Scholar 

  • Bohme CC, Arscott LD, Becker K, Schirmer RH, Williams CH Jr (2000) Kinetic characterization of glutathione reductase from the malarial parasite Plasmodium falciparum. Comparison with the human enzyme. J Biol Chem 275:37317–37323

    CAS  PubMed  Google Scholar 

  • Borges-Santos MD, Moreto F, Pereira PC, Ming-Yu Y, Burini RC (2012) Plasma glutathione of HIV(+) patients responded positively and differently to dietary supplementation with cysteine or glutamine. Nutrition 28(7–8):753–756

    CAS  PubMed  Google Scholar 

  • Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    CAS  PubMed  Google Scholar 

  • Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C (2002) Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295:1073–1077

    CAS  PubMed  Google Scholar 

  • Buccigrossi V, Laudiero G, Nicastro E, Miele E, Esposito F, Guarino A (2011) The HIV-1 transactivator factor (Tat) induces enterocyte apoptosis through a redox-mediated mechanism. PLOS One 6:e29436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchholz K, Rahlfs S, Schirmer RH, Becker K, Matuschewski K (2008) Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite. PLOS One 3:e2474

    PubMed  PubMed Central  Google Scholar 

  • Buchholz K, Putrianti ED, Rahlfs S, Schirmer RH, Becker K, Matuschewski K (2010) Molecular genetics evidence for the in vivo roles of the two major NADPH-dependent disulfide reductases in the malaria parasite. J Biol Chem 285:37388–37395

    CAS  PubMed  Google Scholar 

  • Buchmeier N, Fahey RC (2006) The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett 264:74–79

    CAS  PubMed  Google Scholar 

  • Buchmeier NA, Newton GL, Koledin T, Fahey RC (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47:1723–1732

    CAS  PubMed  Google Scholar 

  • Buchmeier NA, Newton GL, Fahey RC (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188:6245–6252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buhl R, Jaffe HA, Holroyd KJ, Wells FB, Mastrangeli A, Saltini C, Cantin AM, Crystal RG (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2:1294–1298

    CAS  PubMed  Google Scholar 

  • Buonaguro L, Buonaguro FM, Giraldo G, Ensoli B (1994) The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J Virol 68:2677–2682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappadoro M, Giribaldi G, O’Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P (1998) Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92:2527–2534

    CAS  PubMed  Google Scholar 

  • Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR (1995) Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63:736–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charunwatthana P, Abul Faiz M, Ruangveerayut R, Maude RJ, Rahman MR, Roberts LJ 2nd, Moore K, Bin Yunus E, Hoque MG, Hasan MU, Lee SJ, Pukrittayakamee S, Newton PN, White NJ, Day NP, Dondorp AM (2009) N-acetylcysteine as adjunctive treatment in severe malaria: a randomized, double-blinded placebo-controlled clinical trial. Crit Care Med 37:516–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Liu RM, Kundu RK, Sangiorgi F, Wu W, Maxson R, Forman HJ (2000) Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem 275:3693–3698

    CAS  PubMed  Google Scholar 

  • Clarebout G, Slomianny C, Delcourt P, Leu B, Masset A, Camus D, Dive D (1998) Status of Plasmodium falciparum towards catalase. Br J Haematol 103:52–59

    CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    CAS  PubMed  Google Scholar 

  • Cooper AM, Segal BH, Frank AA, Holland SM, Orme IM (2000) Transient loss of resistance to pulmonary tuberculosis in p47(phox−/−) mice. Infect Immun 68:1231–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Orazio M, Cervoni L, Giartosio A, Rotilio G, Battistoni A (2009) Thermal stability and redox properties of M. tuberculosis CuSOD. Arch Biochem Biophys 486:119–124

    PubMed  Google Scholar 

  • Das BS, Nanda NK (1999) Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans R Soc Trop Med Hyg 93:58–62

    CAS  PubMed  Google Scholar 

  • Das BS, Thurnham DI, Patnaik JK, Das DB, Satpathy R, Bose TK (1990) Increased plasma lipid peroxidation in riboflavin-deficient, malaria-infected children. Am J Clin Nutr 51:859–863

    CAS  PubMed  Google Scholar 

  • de Quay B, Malinverni R, Lauterburg BH (1992) Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS 6:815–819

    PubMed  Google Scholar 

  • Delmas-Beauvieux MC, Peuchant E, Couchouron A, Constans J, Sergeant C, Simonoff M, Pellegrin JL, Leng B, Conri C, Clerc M (1996) The enzymatic antioxidant system in blood and glutathione status in human immunodeficiency virus (HIV)-infected patients: effects of supplementation with selenium or beta-carotene. Am J Clin Nutr 64:101–107

    CAS  PubMed  Google Scholar 

  • Deponte M, Becker K, Rahlfs S (2005) Plasmodium falciparum glutaredoxin-like proteins. Biol Chem 386:33–40

    CAS  PubMed  Google Scholar 

  • Deretic V, Philipp W, Dhandayuthapani S, Mudd MH, Curcic R, Garbe T, Heym B, Via LE, Cole ST (1995) Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol 17:889–900

    CAS  PubMed  Google Scholar 

  • Eaton DL, Bammler TK (1999) Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci 49:156–164

    CAS  PubMed  Google Scholar 

  • Eck HP, Gmunder H, Hartmann M, Petzoldt D, Daniel V, Droge W (1989) Low concentrations of acid-soluble thiol (cysteine) in the blood plasma of HIV-1-infected patients. Biol Chem Hoppe Seyler 370:101–108

    CAS  PubMed  Google Scholar 

  • Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, Matusani H, Hakim J, Israel N, Gougerot-Pocidalo MA (1999) Redox and activation status of monocytes from human immunodeficiency virus-infected patients: relationship with viral load. J Virol 73:4561–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan F, Vetting MW, Frantom PA, Blanchard JS (2009) Structures and mechanisms of the mycothiol biosynthetic enzymes. Curr Opin Chem Biol 13:451–459

    CAS  PubMed  Google Scholar 

  • Fitri LE, Sardjono TW, Simamora D, Sumarno RP, Setyawati SK (2011) High dose of N-acetylcysteine increase HO and MDA levels and decrease GSH level of HUVECs exposed with malaria serum. Trop Biomed 28:7–15

    CAS  PubMed  Google Scholar 

  • Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM (1993) Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci USA 90:7632–7636

    CAS  PubMed  Google Scholar 

  • Flynn JL, Scanga CA, Tanaka KE, Chan J (1998) Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160:1796–1803

    CAS  PubMed  Google Scholar 

  • Francis SE, Sullivan DJ Jr, Goldberg DE (1997) Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 51:97–123

    CAS  PubMed  Google Scholar 

  • Fritz-Wolf K, Becker A, Rahlfs S, Harwaldt P, Schirmer RH, Kabsch W, Becker K (2003) X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci USA 100:13821–13826

    CAS  PubMed  Google Scholar 

  • Gallo V, Schwarzer E, Rahlfs S, Schirmer RH, van Zwieten R, Roos D, Arese P, Becker K (2009) Inherited glutathione reductase deficiency and Plasmodium falciparum malaria–a case study. PLOS One 4:e7303

    PubMed  PubMed Central  Google Scholar 

  • Garbe TR, Hibler NS, Deretic V (1996) Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates. Mol Med 2:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil L, Tarinas A, Hernandez D, Riveron BV, Perez D, Tapanes R, Capo V, Perez J (2010) Altered oxidative stress indexes related to disease progression marker in human immunodeficiency virus infected patients with antiretroviral therapy. Biomed Pharmacother 1(1):8–15

    Google Scholar 

  • Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 56:1305–1313

    CAS  PubMed  Google Scholar 

  • Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 93:6146–6151

    CAS  PubMed  Google Scholar 

  • Gomez LM, Anaya JM, Vilchez JR, Cadena J, Hinojosa R, Velez L, Lopez-Nevot MA, Martin J (2007) A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis (Edinb) 87:288–294

    CAS  Google Scholar 

  • Gougeon ML (2005) To kill or be killed: how HIV exhausts the immune system. Cell Death Differ 12(Suppl 1):845–854

    CAS  PubMed  Google Scholar 

  • Gratepanche S, Menage S, Touati D, Wintjens R, Delplace P, Fontecave M, Masset A, Camus D, Dive D (2002) Biochemical and electron paramagnetic resonance study of the iron superoxide dismutase from Plasmodium falciparum. Mol Biochem Parasitol 120:237–246

    CAS  PubMed  Google Scholar 

  • Gretes MC, Poole LB, Karplus PA (2012) Peroxiredoxins in parasites. Antioxid Redox Signal 17(4):608–633

    CAS  PubMed  Google Scholar 

  • Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, Newton CR (2001) Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 113:486–491

    CAS  PubMed  Google Scholar 

  • Hall G, Shah M, McEwan PA, Laughton C, Stevens M, Westwell A, Emsley J (2006) Structure of Mycobacterium tuberculosis thioredoxin C. Acta Crystallogr D Biol Crystallogr 62:1453–1457

    CAS  PubMed  Google Scholar 

  • Hall G, Bradshaw TD, Laughton CA, Stevens MF, Emsley J (2011) Structure of Mycobacterium tuberculosis thioredoxin in complex with quinol inhibitor PMX464. Protein Sci 20:210–215

    CAS  PubMed  Google Scholar 

  • Hampton MB, Orrenius S (1998) Redox regulation of apoptotic cell death. Biofactors 8:1–5

    CAS  PubMed  Google Scholar 

  • Harada M, Owhashi M, Suguri S, Kumatori A, Nakamura M, Kanbara H, Matsuoka H, Ishii A (2001) Superoxide-dependent and -independent pathways are involved in the transmission blocking of malaria. Parasitol Res 87:605–608

    CAS  PubMed  Google Scholar 

  • Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 383:821–830

    CAS  PubMed  Google Scholar 

  • Herzenberg LA, de Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci USA 94:1967–1972

    CAS  PubMed  Google Scholar 

  • Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR (2000) The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 275:18801–18809

    CAS  PubMed  Google Scholar 

  • Hiscott J, Kwon H, Genin P (2001) Hostile takeovers: viral appropriation of the NF-kappaB pathway. J Clin Invest 107:143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    CAS  PubMed  Google Scholar 

  • Hu Y, Coates AR (2009) Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TpX. PLOS One 4:e5150

    PubMed  PubMed Central  Google Scholar 

  • Hugo M, Turell L, Manta B, Botti H, Monteiro G, Netto LE, Alvarez B, Radi R, Trujillo M (2009) Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics. Biochemistry 48:9416–9426

    CAS  PubMed  Google Scholar 

  • Hunt NH, Stocker R (1990) Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells 16:499–526; discussion 527–530

    CAS  PubMed  Google Scholar 

  • Hurwitz BE, Klaus JR, Llabre MM, Gonzalez A, Lawrence PJ, Maher KJ, Greeson JM, Baum MK, Shor-Posner G, Skyler JS, Schneiderman N (2007) Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: a randomized controlled trial. Arch Intern Med 167:148–154

    CAS  PubMed  Google Scholar 

  • Iozef R, Rahlfs S, Chang T, Schirmer H, Becker K (2003) Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion. FEBS Lett 554:284–288

    CAS  PubMed  Google Scholar 

  • Jaeger T, Budde H, Flohe L, Menge U, Singh M, Trujillo M, Radi R (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423:182–191

    CAS  PubMed  Google Scholar 

  • Jin DY, Chae HZ, Rhee SG, Jeang KT (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272:30952–30961

    CAS  PubMed  Google Scholar 

  • Jortzik E, Fritz-Wolf K, Sturm N, Hipp M, Rahlfs S, Becker K (2010) Redox regulation of Plasmodium falciparum ornithine delta-aminotransferase. J Mol Biol 402:445–459

    CAS  PubMed  Google Scholar 

  • Jothivasan VK, Hamilton CJ (2008) Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 25:1091–1117

    CAS  PubMed  Google Scholar 

  • Jung YJ, Lacourse R, Ryan L, North RJ (2002) Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide Synthase 2-independent defense in mice. J Exp Med 196:991–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalantari P, Narayan V, Natarajan SK, Muralidhar K, Gandhi UH, Vunta H, Henderson AJ, Prabhu KS (2008) Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages. J Biol Chem 283:33183–33190

    CAS  PubMed  Google Scholar 

  • Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 275:40180–40186

    CAS  PubMed  Google Scholar 

  • Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330:489–493

    CAS  PubMed  Google Scholar 

  • Kappe SH, Vaughan AM, Boddey JA, Cowman AF (2010) That was then but this is now: malaria research in the time of an eradication agenda. Science 328:862–866

    CAS  PubMed  Google Scholar 

  • Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K (2010) Compartmentation of redox metabolism in malaria parasites. PLOS Pathog 6:e1001242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr S, Jortzik E, Delahunty C, Yates JR 3rd, Rahlfs S, Becker K (2011) Protein s-glutathionylation in malaria parasites. Antioxid Redox Signal 15:2855–2865

    CAS  PubMed  Google Scholar 

  • Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M (2000) Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. J Biol Chem 275:18266–18270

    CAS  PubMed  Google Scholar 

  • Koken SE, Greijer AE, Verhoef K, van Wamel J, Bukrinskaya AG, Berkhout B (1994) Intracellular analysis of in vitro modified HIV Tat protein. J Biol Chem 269:8366–8375

    CAS  PubMed  Google Scholar 

  • Komaki-Yasuda K, Kawazu S, Kano S (2003) Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett 547:140–144

    CAS  PubMed  Google Scholar 

  • Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J 3rd, Rahlfs S, Becker K (2009) The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. Proc Natl Acad Sci USA 106:13323–13328

    PubMed  Google Scholar 

  • Koshkin A, Knudsen GM, Ortiz De Montellano PR (2004) Intermolecular interactions in the AhpC/AhpD antioxidant defense system of Mycobacterium tuberculosis. Arch Biochem Biophys 427:41–47

    CAS  PubMed  Google Scholar 

  • Krauth-Siegel RL, Muller JG, Lottspeich F, Schirmer RH (1996) Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Eur J Biochem 235:345–350

    CAS  PubMed  Google Scholar 

  • Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Muller S (2002) Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 277:25970–25975

    CAS  PubMed  Google Scholar 

  • Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188

    CAS  PubMed  Google Scholar 

  • Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJ (2011) Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med 13:e39

    PubMed  PubMed Central  Google Scholar 

  • Lanzillotti JS, Tang AM (2005) Micronutrients and HIV disease: a review pre- and post-HAART. Nutr Clin Care 8:16–23

    PubMed  Google Scholar 

  • Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378:57–72

    PubMed  Google Scholar 

  • Lee WL, Gold B, Darby C, Brot N, Jiang X, de Carvalho LP, Wellner D, St John G, Jacobs WR Jr, Nathan C (2009) Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 71:583–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leff JA, Oppegard MA, Curiel TJ, Brown KS, Schooley RT, Repine JE (1992) Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radic Biol Med 13:143–149

    CAS  PubMed  Google Scholar 

  • Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI (2010) The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192:1662–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leto TL, Geiszt M (2006) Role of Nox family NADPH oxidases in host defense. Antioxid Redox Signal 8:1549–1561

    CAS  PubMed  Google Scholar 

  • Li Y, He ZG (2012) The mycobacterial LysR-type regulator OxyS responds to oxidative stress and negatively regulates expression of the catalase-peroxidase gene. PLOS One 7:e30186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Kelley C, Collins F, Rouse D, Morris S (1998) Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177:1030–1035

    CAS  PubMed  Google Scholar 

  • Loria P, Miller S, Foley M, Tilley L (1999) Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem J 339(Pt 2):363–370

    CAS  PubMed  Google Scholar 

  • Macmicking JD, North RJ, Lacourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248

    CAS  PubMed  Google Scholar 

  • Manca C, Paul S, Barry CE 3rd, Freedman VH, Kaplan G (1999) Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 67:74–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Master SS, Springer B, Sander P, Boettger EC, Deretic V, Timmins GS (2002) Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148:3139–3144

    CAS  PubMed  Google Scholar 

  • Masutani H, Ueda S, Yodoi J (2005) The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 12(Suppl 1):991–998

    CAS  PubMed  Google Scholar 

  • McDermid JM, Lalonde RG, Gray-Donald K, Baruchel S, Kubow S (2002) Associations between dietary antioxidant intake and oxidative stress in HIV-seropositive and HIV-seronegative men and women. J Acquir Immune Defic Syndr 29:158–164

    CAS  PubMed  Google Scholar 

  • Miesel L, Weisbrod TR, Marcinkeviciene JA, Bittman R, Jacobs WR Jr (1998) NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180:2459–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris D, Guerra C, Donohue C, Oh H, Khurasany M, Venketaraman V (2012) Unveiling the mechanisms for decreased glutathione in individuals with HIV infection. Clin Dev Immunol 2012:734125

    PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379:413–431

    PubMed  Google Scholar 

  • Nakamura H, de Rosa S, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Herzenberg LA (1996) Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol 8:603–611

    CAS  PubMed  Google Scholar 

  • Narsaria N, Mohanty C, Das BK, Mishra SP, Prasad R (2011) Oxidative stress in children with severe malaria. J Trop Pediatr 58(2):147–150

    PubMed  Google Scholar 

  • Newton GL, Fahey RC, Cohen G, Aharonowitz Y (1993) Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol 175:2734–2742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton GL, Av-Gay Y, Fahey RC (2000) A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry 39:10739–10746

    CAS  PubMed  Google Scholar 

  • Newton GL, Buchmeier N, Fahey RC (2008) Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72:471–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng VH, Cox JS, Sousa AO, Macmicking JD, McKinney JD (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52:1291–1302

    CAS  PubMed  Google Scholar 

  • Nicholas GM, Eckman LL, Newton GL, Fahey RC, Ray S, Bewley CA (2003) Inhibition and kinetics of mycobacterium tuberculosis and mycobacterium smegmatis mycothiol-S-conjugate amidase by natural product inhibitors. Bioorg Med Chem 11:601–608

    CAS  PubMed  Google Scholar 

  • Nicholson S, Bonecini-Almeida Mda G, Lapa E Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183:2293–2302

    CAS  PubMed  Google Scholar 

  • Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, Becker K (2005) Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol Chem 386:1129–1136

    CAS  PubMed  Google Scholar 

  • Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8:1227–1239

    CAS  PubMed  Google Scholar 

  • Nussenblatt V, Semba RD (2002) Micronutrient malnutrition and the pathogenesis of malarial anemia. Acta Trop 82:321–337

    CAS  PubMed  Google Scholar 

  • Pabon A, Carmona J, Burgos LC, Blair S (2003) Oxidative stress in patients with non-complicated malaria. Clin Biochem 36:71–78

    CAS  PubMed  Google Scholar 

  • Pantaleo G, Graziosi C, Fauci AS (1993) New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 328:327–335

    CAS  PubMed  Google Scholar 

  • Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR (2003) Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48:833–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastrana-Mena R, Dinglasan RR, Franke-Fayard B, Vega-Rodriguez J, Fuentes-Caraballo M, Baerga-Ortiz A, Coppens I, Jacobs-Lorena M, Janse CJ, Serrano AE (2010) Glutathione reductase-null malaria parasites have normal blood stage growth but arrest during development in the mosquito. J Biol Chem 285:27045–27056

    CAS  PubMed  Google Scholar 

  • Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28:663–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polat G, Aslan G, Eskandari GH, Delialioglu N, Bagdatoglu O, Atik U (2002) The role of nitric oxide and lipid peroxidation in patients with Plasmodium vivax malaria. Parasite 9:371–374

    CAS  PubMed  Google Scholar 

  • Potter SM, Mitchell AJ, Cowden WB, Sanni LA, Dinauer M, de Haan JB, Hunt NH (2005) Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 73:4941–4947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price TO, Ercal N, Nakaoke R, Banks WA (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045:57–63

    CAS  PubMed  Google Scholar 

  • Pym AS, Domenech P, Honore N, Song J, Deretic V, Cole ST (2001) Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol Microbiol 40:879–889

    CAS  PubMed  Google Scholar 

  • Rahlfs S, Fischer M, Becker K (2001) Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J Biol Chem 276:37133–37140

    CAS  PubMed  Google Scholar 

  • Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC, Av-Gay Y (2002) Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46:3348–3355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat M, Uppal M, Newton G, Steffek M, Fahey RC, Av-Gay Y (2004) Targeted mutagenesis of the Mycobacterium smegmatis mca gene, encoding a mycothiol-dependent detoxification protein. J Bacteriol 186:6050–6058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiser K, Francois KO, Schols D, Bergman T, Jornvall H, Balzarini J, Karlsson A, Lundberg M (2012) Thioredoxin-1 and protein disulfide isomerase catalyze the reduction of similar disulfides in HIV gp120. Int J Biochem Cell Biol 44(3):556–562

    CAS  PubMed  Google Scholar 

  • Rho BS, Hung LW, Holton JM, Vigil D, Kim SI, Park MS, Terwilliger TC, Pedelacq JD (2006) Functional and structural characterization of a thiol peroxidase from Mycobacterium tuberculosis. J Mol Biol 361:850–863

    CAS  PubMed  Google Scholar 

  • Richard MJ, Guiraud P, Didier C, Seve M, Flores SC, Favier A (2001) Human immunodeficiency virus type 1 Tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: consequences on cellular resistance to UV-A radiation. Arch Biochem Biophys 386:213–220

    CAS  PubMed  Google Scholar 

  • Richard D, Bartfai R, Volz J, Ralph SA, Muller S, Stunnenberg HG, Cowman AF (2011) A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J Biol Chem 286:11746–11755

    CAS  PubMed  Google Scholar 

  • Roederer M, Staal FJ, Raju PA, Ela SW, Herzenberg LA (1990) Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine. Proc Natl Acad Sci USA 87:4884–4888

    CAS  PubMed  Google Scholar 

  • Roederer M, Staal FJ, Osada H, Herzenberg LA (1991) CD4 and CD8 T cells with high intracellular glutathione levels are selectively lost as the HIV infection progresses. Int Immunol 3:933–937

    CAS  PubMed  Google Scholar 

  • Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91:1–12

    CAS  PubMed  Google Scholar 

  • Romero-Alvira D, Roche E (1998) The keys of oxidative stress in acquired immune deficiency syndrome apoptosis. Med Hypotheses 51:169–173

    CAS  PubMed  Google Scholar 

  • Rouse DA, Devito JA, Li Z, Byer H, Morris SL (1996) Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol 22:583–592

    CAS  PubMed  Google Scholar 

  • Ruwende C, Hill A (1998) Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med (Berl) 76:581–588

    CAS  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    CAS  PubMed  Google Scholar 

  • Sanni LA, Fu S, Dean RT, Bloomfield G, Stocker R, Chaudhri G, Dinauer MC, Hunt NH (1999) Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J Infect Dis 179:217–222

    CAS  PubMed  Google Scholar 

  • Sareen D, Newton GL, Fahey RC, Buchmeier NA (2003) Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol 185:6736–6740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA (2003) Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol 328:893–907

    CAS  PubMed  Google Scholar 

  • Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, Karplus PA (2005) Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J Mol Biol 346:1021–1034

    CAS  PubMed  Google Scholar 

  • Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    CAS  PubMed  Google Scholar 

  • Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J (2001) The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69:7711–7717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    CAS  PubMed  Google Scholar 

  • Sherman DR, Sabo PJ, Hickey MJ, Arain TM, Mahairas GG, Yuan Y, Barry CE 3rd, Stover CK (1995) Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci USA 92:6625–6629

    CAS  PubMed  Google Scholar 

  • Shiloh MU, Nathan CF (2000) Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol 3:35–42

    CAS  PubMed  Google Scholar 

  • Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3:323–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shor-Posner G, Lecusay R, Miguez MJ, Moreno-Black G, Zhang G, Rodriguez N, Burbano X, Baum M, Wilkie F (2003) Psychological burden in the era of HAART: impact of selenium therapy. Int J Psychiatry Med 33:55–69

    PubMed  Google Scholar 

  • Sienkiewicz N, Daher W, Dive D, Wrenger C, Viscogliosi E, Wintjens R, Jouin H, Capron M, Muller S, Khalife J (2004) Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol Biochem Parasitol 137:121–132

    CAS  PubMed  Google Scholar 

  • Singh A, Guidry L, Narasimhulu KV, Mai D, Trombley J, Redding KE, Giles GI, Lancaster JR Jr, Steyn AJ (2007) Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. Proc Natl Acad Sci USA 104:11562–11567

    CAS  PubMed  Google Scholar 

  • Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ (2009) Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLOS Pathog 5:e1000545

    PubMed  PubMed Central  Google Scholar 

  • Singhal N, Austin J (2002) A clinical review of micronutrients in HIV infection. J Int Assoc Physicians AIDS Care (Chic) 1:63–75

    Google Scholar 

  • Staal FJ, Roederer M, Herzenberg LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87:9943–9947

    CAS  PubMed  Google Scholar 

  • Stehbens WE (2004) Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 77:121–132

    CAS  PubMed  Google Scholar 

  • Steyn AJ, Collins DM, Hondalus MK, Jacobs WR Jr, Kawakami RP, Bloom BR (2002) Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99:3147–3152

    CAS  PubMed  Google Scholar 

  • Stiebler R, Soares JB, Timm BL, Silva JR, Mury FB, Dansa-Petretski M, Oliveira MF (2011) On the mechanisms involved in biological heme crystallization. J Bioenerg Biomembr 43:93–99

    CAS  PubMed  Google Scholar 

  • Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, Forchhammer K, Rahlfs S, Becker K (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLOS Pathog 5:e1000383

    PubMed  PubMed Central  Google Scholar 

  • Suresh DR, Annam V, Pratibha K, Prasad BV (2009) Total antioxidant capacity–a novel early bio-chemical marker of oxidative stress in HIV infected individuals. J Biomed Sci 16:61

    CAS  PubMed  Google Scholar 

  • Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohe R, Flohe L (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 276:7397–7403

    CAS  PubMed  Google Scholar 

  • Trujillo M, Mauri P, Benazzi L, Comini M, de Palma A, Flohe L, Radi R, Stehr M, Singh M, Ursini F, Jaeger T (2006) The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin. J Biol Chem 281:20555–20566

    CAS  PubMed  Google Scholar 

  • Tuteja R (2007) Malaria – an overview. FEBS J 274:4670–4679

    CAS  PubMed  Google Scholar 

  • Vega-Rodriguez J, Franke-Fayard B, Dinglasan RR, Janse CJ, Pastrana-Mena R, Waters AP, Coppens I, Rodriguez-Orengo JF, Srinivasan P, Jacobs-Lorena M, Serrano AE (2009) The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission. PLOS Pathog 5:e1000302

    PubMed  PubMed Central  Google Scholar 

  • Velez DR, Hulme WF, Myers JL, Weinberg JB, Levesque MC, Stryjewski ME, Abbate E, Estevan R, Patillo SG, Gilbert JR, Hamilton CD, Scott WK (2009) NOS2A, TLR4, and IFNGR1 interactions influence pulmonary tuberculosis susceptibility in African-Americans. Hum Genet 126:643–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcheze C, Jacobs WR Jr (2007) The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev Microbiol 61:35–50

    CAS  PubMed  Google Scholar 

  • Vilcheze C, Weisbrod TR, Chen B, Kremer L, Hazbon MH, Wang F, Alland D, Sacchettini JC, Jacobs WR Jr (2005) Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49:708–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RN, Steenkamp DJ, Zheng R, Blanchard JS (2003) The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase. Biochem J 374:657–666

    CAS  PubMed  Google Scholar 

  • Voskuil MI, Bartek IL, Visconti K, Schoolnik GK (2011) The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2:105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Washington AT, Singh G, Aiyar A (2010) Diametrically opposed effects of hypoxia and oxidative stress on two viral transactivators. Virol J 7:93

    PubMed  PubMed Central  Google Scholar 

  • Watt G, Jongsakul K, Ruangvirayuth R (2002) A pilot study of N-acetylcysteine as adjunctive therapy for severe malaria. QJM 95:285–290

    CAS  PubMed  Google Scholar 

  • Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL (2008) Arginine, nitric oxide, carbon monoxide, and endothelial function in severe malaria. Curr Opin Infect Dis 21:468–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wengenack NL, Jensen MP, Rusnak F, Stern MK (1999) Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem Biophys Res Commun 256:485–487

    CAS  PubMed  Google Scholar 

  • WHO (2011a) Global HIV/AIDS response. Progress Report 2011. Available http://whqlibdoc.who.int/publications/2011/9789241502986_eng.pdf

  • WHO (2011b) Global tuberculosis control 2011 [Online]. Available http://www.who.int/tb/publications/global_report/en/. Accessed 10 Feb 2012

  • WHO (2011c) World malaria report 2011 [Online]. Available http://www.who.int/malaria/world_malaria_report_2011/en/. Accessed 14 Feb 2012

  • Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267:6110–6117

    CAS  PubMed  Google Scholar 

  • Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    CAS  PubMed  Google Scholar 

  • Xu X, Vilcheze C, Av-Gay Y, Gomez-Velasco A, Jacobs WR Jr (2011) Precise null deletion mutations of the mycothiol synthesis genes reveal their role in isoniazid and ethionamide resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 55:3133–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, McNeil YR, Darcy CJ, Granger DL, Weinberg JB, Lopansri BK, Price RN, Duffull SB, Celermajer DS, Anstey NM (2008) Recovery of endothelial function in severe falciparum malaria: relationship with improvement in plasma L-arginine and blood lactate concentrations. J Infect Dis 198:602–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahrt TC, Deretic V (2002) Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid Redox Signal 4:141–159

    CAS  PubMed  Google Scholar 

  • Zahrt TC, Song J, Siple J, Deretic V (2001) Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol Microbiol 39:1174–1185

    CAS  PubMed  Google Scholar 

  • Zeba AN, Sorgho H, Rouamba N, Zongo I, Rouamba J, Guiguemde RT, Hamer DH, Mokhtar N, Ouedraogo JB (2008) Major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children in Burkina Faso: a randomized double blind trial. Nutr J 7:7

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lathigra R, Garbe T, Catty D, Young D (1991) Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol Microbiol 5:381–391

    CAS  PubMed  Google Scholar 

  • Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    CAS  PubMed  Google Scholar 

  • Zhang Z, Hillas PJ, Ortiz De Montellano PR (1999) Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch Biochem Biophys 363:19–26

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jortzik, E., Becker, K. (2013). Oxidative Stress in Infectious Diseases. In: Jakob, U., Reichmann, D. (eds) Oxidative Stress and Redox Regulation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5787-5_13

Download citation

Publish with us

Policies and ethics