Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 370 Accesses

Abstract

In this chapter, the structural and vibrational properties of chromyl thiocyanate were studied using density functional theory (DFT) methods. The initial geometries were fully optimized at different theory levels and the harmonic wavenumbers were evaluated at the same levels. Also, the characteristics and nature of the Cr–O and Cr ← O bonds for the stable structure were studied by means of the natural bond orbital (NBO) study while the topological properties of electronic charge density were analyzed using Bader’s atoms in the molecules theory (AIM). Besides, a complete assignment of all observed bands in the infrared spectrum for the compound was performed combining DFT calculations with Pulay’s scaled quantum mechanics force field (SQMFF) methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Brandán, J. Mol. Struc. (THEOCHEM) 908, 19 (2009)

    Article  Google Scholar 

  2. S.A. Brandán, in Structural and Vibrational Properties of Chromyl Perchlorate, ed. by L.E. Mattews Chapter 3 (Nova Science Publisher, Inc., New York, 2010)

    Google Scholar 

  3. S.A. Brandán, M.L. Roldán, C. Socolsky, A. Ben Altabef, Spectrochim. Acta. Part A 69, 1027 (2008)

    Article  Google Scholar 

  4. A. Ben Altabef, S.A. Brandán, J. Mol. Struct. 981, 146 (2010)

    Article  CAS  Google Scholar 

  5. C.J. Marsden, K. Hedberg, M.M. Ludwig, G.L. Gard, Molecular structure of CrO2(NO3)2 in gas phase: a novel form of coordination. Inorg. Chem. 30, 4761–4766 (1991)

    Article  CAS  Google Scholar 

  6. M.L. Campbell, S.B. Larson, N.K. Dalley, Acta Cryst. B37, 1741–1744 (1981)

    CAS  Google Scholar 

  7. P.H. van Rooyen, J.C.A. Boeyens, Acta Cryst. B31, 2933–2934 (1975)

    Google Scholar 

  8. M. Dobler, J.D. Dunitz, P. Seiler, Acta Cryst. B30, 2741–2743 (1974)

    CAS  Google Scholar 

  9. W. Xu, J.-M. Shi, X. Zhang, Acta Cryst. E61, m2194–m2195 (2005)

    CAS  Google Scholar 

  10. J.W. Bats, P. Coppens, Å. Kvick, Acta Cryst. B33, 1534–1542 (1977)

    CAS  Google Scholar 

  11. T.-H. Lu, J.-M. Lo, B.-H. Chen, M.-Y. Yeh, S.-F. Tung, W.-T. Huang, H.-.H. Yao, Acta Cryst. C54, 1067–1068 (1998)

    CAS  Google Scholar 

  12. W. Yong, J.-M. Dou, D.-Z. Zhu, Y. Liu, X. Li, P.-J. Zheng, Acta Cryst. E57, m127–m129 (2001)

    CAS  Google Scholar 

  13. V. Adovasio, M. Nardelli, Acta Cryst. C51, 380–382 (1995)

    CAS  Google Scholar 

  14. A.E. Reed, L.A. Curtis, F. Weinhold, Chem. Rev. 88(6), 899 (1988)

    Article  CAS  Google Scholar 

  15. J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  CAS  Google Scholar 

  16. A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736 (1985)

    Article  CAS  Google Scholar 

  17. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990). ISBN 0198558651

    Google Scholar 

  18. A.B. Nielsen, A.J. Holder, GaussView User’s Reference, (GAUSSIAN, Inc., Pittsburgh, 2000–2003)

    Google Scholar 

  19. Gaussian 03, Revision B.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.04 (Gaussian, Inc., Pittsburgh, 2003)

    Google Scholar 

  20. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  22. G. Fogarasi, P. Pulay, in Vibrational Spectra and Structure, vol. 14, ed. by J.E. Durig (Elsevier, Amsterdam, 1985), p. 125

    Google Scholar 

  23. P. Pulay, G. Fogarasi, F. Pang, J.E. Boggs, J. Am. Chem. Soc. 101(10), 2550 (1979)

    Article  CAS  Google Scholar 

  24. T. Sundius, J. Mol. Struct. 218, 321 (1990)

    Article  CAS  Google Scholar 

  25. T. Sundius, in MOLVIB: A Program for Harmonic Force Field Calculation, QCPE Program No. 604 (Adenine Press, Schenectady, 1991)

    Google Scholar 

  26. E.D. Glendening, A. E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1 (Theoretical Chemistry Institute, University of Wisconsin, Madison, 1996)

    Google Scholar 

  27. F. Biegler-Köning, J. Schönbohm, D. Bayles, AIM2000; a program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545 (2001)

    Article  Google Scholar 

  28. C.J. Marsden, L. Hedberg, K. Hedberg, Inorg. Chem. 21, 1113 (1982)

    Article  Google Scholar 

  29. R.J. French, L. Hedberg, K. Hedberg, G.L. Gard, B.M. Johnson, Inorg. Chem. 22, 892 (1982)

    Article  Google Scholar 

  30. R.J. Gillespie (ed.), Molecular Geometry (Van Nostrand-Reinhold, London, 1972)

    Google Scholar 

  31. R.J. Gillespie, I. Bytheway, T.H. Tang, R.F.W. Bader, Inorg. Chem. 35, 3954 (1996)

    Article  CAS  Google Scholar 

  32. L. E. Sutton (ed.), Tables of Interatomic Distances and Configurations in Molecules and Anions (Burlington House, London, 1958), p. 49

    Google Scholar 

  33. K. Nakanishi, P.H. Solomon, Infrared Absorption Spectroscopy (Holden-Day, Inc., Sydney, 1977)

    Google Scholar 

Download references

Acknowledgments

This work was subsidized with grants from CIUNT (Consejo de Investigaciones, Universidad Nacional de Tucumán). The author thanks Prof. Tom Sundius for his permission to use MOLVIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia A. Brandán .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Brandán, S.A. (2013). Theoretical Structural and Vibrational DFT Calculations of Chromyl Thiocyanate. In: A Structural and Vibrational Investigation into Chromylazide, Acetate, Perchlorate, and Thiocyanate Compounds. SpringerBriefs in Molecular Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5754-7_4

Download citation

Publish with us

Policies and ethics