Skip to main content

Robust Portfolio Selection Model with Random Fuzzy Returns Based on Arbitrage Pricing Theory and Fuzzy Reasoning Method

  • Chapter
  • First Online:
IAENG Transactions on Engineering Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 186))

  • 815 Accesses

Abstract

This paper considers a robust-based random fuzzy mean-variance portfolio selection problem using a fuzzy reasoning method, particularly a single input type fuzzy reasoning method. Arbitrage Pricing Theory (APT) is introduced as a future return of each security, and each factor in APT is assumed to be a random fuzzy variable whose mean is derived from a fuzzy reasoning method. Furthermore, under interval inputs of fuzzy reasoning method, a robust programming approach is introduced in order to minimize the worst case of the total variance. The proposed model is equivalently transformed into the deterministic nonlinear programming problem, and so the solution steps to obtain the exact optimal portfolio are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elton EJ, Gruber MJ (1995) Modern portfolio theory and investment analysis. Wiley, New York

    Google Scholar 

  2. Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Operat Res 28:1–38

    Article  MathSciNet  MATH  Google Scholar 

  3. Hasuike T, Katagiri H, Ishii H (2009) Multiobjective random fuzzy linear programming problems based on the possibility maximization model. J Adv Comput Intell Intellt Inform 13(4):373–379

    Google Scholar 

  4. Hasuike T, Katagiri H, Ishii H (2009) Portfolio selection problems with random fuzzy variable returns. Fuzzy Sets Syst 160:2579–2596

    Article  MathSciNet  MATH  Google Scholar 

  5. Hasuike T, Katagiri H, Tsuda H (2012) Robust-based random fuzzy mean-variance model using a fuzzy reasoning method. In: Lecture notes in engineering and computer science: proceedings of the international multi conference of engineers and computer scientists 2012, IMECS 2012, 14–16 March, 2012, Hong Kong, pp 1461–1466

    Google Scholar 

  6. Hayashi K, Otsubo A, Shiranita K (1999) Realization of nonlinear and linear PID control using simplified direct inference method. IEICE Trans Fundam (Japanese Edition), J82-A(7), pp 1180–1184

    Google Scholar 

  7. Hayashi K, Otsubo A, Shirahata K (2001) Improvement of conventional method of PI fuzzy control. IEICE Trans Fundam E84-A(6), pp 1588–1592

    Google Scholar 

  8. Huang X (2007) Two new models for portfolio selection with stochastic returns taking fuzzy information. Eur J Oper Res 180:396–405

    Article  MATH  Google Scholar 

  9. Inuiguchi M, Ramik J (2000) Possibilisitc linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst 111:3–28

    Article  MathSciNet  MATH  Google Scholar 

  10. Katagiri H, Hasuike T, Ishii H, Nishizaki I (2008) Random fuzzy programming models based on possibilistic programming. In:Proceedings of the 2008 IEEE international conference on systems, man and cybernetics (to appear)

    Google Scholar 

  11. Katagiri H, Ishii H, Sakawa M (2004) On fuzzy random linear knapsack problems. CEJOR 12:59–70

    MathSciNet  MATH  Google Scholar 

  12. Katagiri H, Sakawa M, Ishii H (2005) A study on fuzzy random portfolio selection problems using possibility and necessity measures. Scientiae Mathematicae Japonocae 65:361–369

    MathSciNet  Google Scholar 

  13. Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manage Sci 37:519–531

    Article  Google Scholar 

  14. Konno H, Shirakawa H, Yamazaki H (1993) A mean-absolute deviation-skewness portfolio optimization model. Ann Oper Res 45:205–220

    Article  MathSciNet  MATH  Google Scholar 

  15. Leon RT, Liern V, Vercher E (2002) Validity of infeasible portfolio selection problems: fuzzy approach. Eur J Oper Res 139:178–189

    Article  MATH  Google Scholar 

  16. Lintner BJ (1965) Valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Rev Econ Stat 47:13–37

    Article  Google Scholar 

  17. Liu B (2002) Theory and practice of uncertain programming. Physica Verlag, Heidelberg

    Google Scholar 

  18. Lobo MS (2000) Robust and convex optimization with applications in finance. Doctor thesis of the department of Electrical engineering and the committee on graduate studies, Stanford University, Stanford

    Google Scholar 

  19. Luenberger DG (1997) Investment science, Oxford University Press, Oxford

    Google Scholar 

  20. Markowitz HM (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  21. Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. Proc IEE 121(12):1585–1588

    Google Scholar 

  22. Mossin J (1966) Equilibrium in capital asset markets. Econometrica 34(4):768–783

    Article  Google Scholar 

  23. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):1–21

    Google Scholar 

  24. Ross S (1976) The arbitrage theory of capital asset pricing. J Econ Theory 13(3):341–360

    Article  Google Scholar 

  25. Sharpe WF (1964) Capital asset prices: A theory of market equivalent under conditions of risk. J Financ 19(3):425–442

    MathSciNet  Google Scholar 

  26. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1), pp 116–132

    Google Scholar 

  27. Tanaka H, Guo P (1999) Portfolio selection based on upper and lower exponential possibility distributions. Eur J Oper Res 114:115–126

    Article  MATH  Google Scholar 

  28. Tanaka H, Guo P, Turksen IB (2000) Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets Syst 111:387–397

    Article  MathSciNet  MATH  Google Scholar 

  29. Vercher E, Bermúdez JD, Segura JV (2007) Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets Syst 158:769–782

    Article  MATH  Google Scholar 

  30. Watada J (1997) Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Math Pub 13:219–248

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hasuike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hasuike, T., Katagiri, H., Tsuda, H. (2013). Robust Portfolio Selection Model with Random Fuzzy Returns Based on Arbitrage Pricing Theory and Fuzzy Reasoning Method. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) IAENG Transactions on Engineering Technologies. Lecture Notes in Electrical Engineering, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5651-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5651-9_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5623-6

  • Online ISBN: 978-94-007-5651-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics