Skip to main content

Web Resources for microRNA Research

  • Chapter
  • First Online:
MicroRNA Cancer Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 774))

Abstract

Over the last decade thousands of microRNAs (miRNAs) have been discovered in all kinds of taxa. The ever growing number of identified miRNA genes required ordered cataloging and annotation. This has led to the development of miRNA web resources.

MiRNA web resources can be referred to either as web accessible databases (repositories) or web applications that provide a defined computational task upon user request. Today, more than three dozen web accessible resources exist that gather, organize and annotate all kinds of miRNA related data. According to the type of data or data processing method, these miRNA web resources can be classified as miRNA sequence and annotation databases, resources and tools for predicted as well as experimentally validated targets, databases of miRNA regulation and expression, functional annotation and mapping databases and a number of other tools and resources that are species-specific or focus on particular phenotypes.

This chapter provides an overview of the different types of miRNA web resources and their purpose and gives some examples for each category. Furthermore, some valuable miRNA web applications will be introduced. Finally, strategies for miRNA data retrieval and associated risks and pitfalls will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RESTful characterizes a web service that meets constrains defined in the Representational State Transfer (REST) architectural style principles.

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    CAS  PubMed  Google Scholar 

  3. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669

    CAS  PubMed  Google Scholar 

  4. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  5. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    CAS  PubMed  Google Scholar 

  6. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864

    CAS  PubMed  Google Scholar 

  7. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobsen A, Krogh A, Kauppinen S, Lindow M (2010) miRMaid: a unified programming interface for microRNA data resources. BMC Bioinform 11:29

    Google Scholar 

  9. Gerlach D, Kriventseva EV, Rahman N, Vejnar CE, Zdobnov EM (2009) miROrtho: computational survey of microRNA genes. Nucleic Acids Res 37:D111–D117

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Taccioli C, Fabbri E, Visone R, Volinia S, Calin GA, Fong LY, Gambari R, Bottoni A, Acunzo M, Hagan J, Iorio MV, Piovan C, Romano G, Croce CM (2009) UCbase & miRfunc: a database of ultraconserved sequences and microRNA function. Nucleic Acids Res 37:D41–D48

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy A, Sela N, Ast G (2008) TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res 36:D47–D52

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsu PWC, Huang H-D, Hsu S-D, Lin L-Z, Tsou A-P, Tseng C-P, Stadler PF, Washietl S, Hofacker IL (2006) miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34:D135–D139

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14:1012–1017

    CAS  PubMed  Google Scholar 

  17. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197

    CAS  PubMed  Google Scholar 

  19. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993

    CAS  PubMed  Google Scholar 

  21. Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 37:W356–W362

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    CAS  PubMed  Google Scholar 

  23. Cho S, Jun Y, Lee S, Choi H-S, Jung S, Jang Y, Park C, Kim S, Lee S, Kim W (2011) miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res 39:D158–D162

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    CAS  PubMed  Google Scholar 

  25. Tanzer A, Stadler PF (2004) Molecular evolution of a MicroRNA cluster. J Mol Biol 339:327–335

    CAS  PubMed  Google Scholar 

  26. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M, Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J, Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ (2010) Ensembl 2011. Nucleic Acids Res 39:D800–D806

    PubMed  PubMed Central  Google Scholar 

  28. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 40:D48–D53

    PubMed  PubMed Central  Google Scholar 

  29. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    CAS  PubMed  Google Scholar 

  30. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    CAS  PubMed  Google Scholar 

  31. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    CAS  PubMed  Google Scholar 

  32. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    CAS  PubMed  Google Scholar 

  33. Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60

    PubMed  PubMed Central  Google Scholar 

  34. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    PubMed  PubMed Central  Google Scholar 

  35. Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267:529–535

    CAS  PubMed  Google Scholar 

  36. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363

    PubMed  PubMed Central  Google Scholar 

  37. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178

    CAS  PubMed  Google Scholar 

  38. Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    CAS  PubMed  Google Scholar 

  39. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  40. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    CAS  PubMed  Google Scholar 

  41. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA ­targets predicts functional non-conserved and non-canonical sites. Genome Biol 11:R90

    PubMed  PubMed Central  Google Scholar 

  42. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910

    CAS  PubMed  Google Scholar 

  44. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    CAS  PubMed  Google Scholar 

  45. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    CAS  PubMed  Google Scholar 

  46. Saetrom O, Snøve O, Saetrom P (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995–1003

    CAS  PubMed  Google Scholar 

  47. Kim S-K, Nam J-W, Rhee J-K, Lee W-J, Zhang B-T (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411

    PubMed  PubMed Central  Google Scholar 

  48. Yan X, Chao T, Tu K, Zhang Y, Xie L, Gong Y, Yuan J, Qiang B, Peng X (2007) Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 581:1587–1593

    CAS  PubMed  Google Scholar 

  49. Yang Y, Wang Y-P, Li K-B (2008) MiRTif: a support vector machine-based microRNA target interaction filter. BMC Bioinform 9(Suppl 12):S4

    Google Scholar 

  50. Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinform 11:292

    Google Scholar 

  51. Liu H, Yue D, Chen Y, Gao S-J, Huang Y (2010) Improving performance of mammalian microRNA target prediction. BMC Bioinform 11:476

    Google Scholar 

  52. Elefant N, Berger A, Shein H, Hofree M, Margalit H, Altuvia Y (2011) RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res 39:D188–D194

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Naqa IME (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332

    PubMed  Google Scholar 

  54. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2010) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39:D1005–D1010

    PubMed  PubMed Central  Google Scholar 

  55. Wang X, Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34:1646–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847

    CAS  PubMed  Google Scholar 

  57. Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    CAS  PubMed  Google Scholar 

  58. Huang JC, Morris QD, Frey BJ (2007) Bayesian inference of MicroRNA targets from sequence and expression data. J Comput Biol 14:550–563

    CAS  PubMed  Google Scholar 

  59. Volinia S, Visone R, Galasso M, Rossi E, Croce CM (2009) Identification of microRNA activity by Targets’ Reverse EXpression. Bioinformatics 26:91–97

    PubMed  Google Scholar 

  60. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A-C, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang J-H, Li J-H, Shao P, Zhou H, Chen Y-Q, Qu L-H (2011) StarBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2011) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    PubMed  PubMed Central  Google Scholar 

  64. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, Chien C-H, Wu M-C, Huang C-Y, Tsou A-P, Huang H-D (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689

    PubMed  Google Scholar 

  66. Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci 104:19291–19296

    CAS  PubMed  Google Scholar 

  67. Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107

    PubMed  PubMed Central  Google Scholar 

  68. Jovanovic M, Reiter L, Picotti P, Lange V, Bogan E, Hurschler BA, Blenkiron C, Lehrbach NJ, Ding XC, Weiss M, Schrimpf SP, Miska EA, Grosshans H, Aebersold R, Hengartner MO (2010) A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods 7:837–842

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    CAS  PubMed  Google Scholar 

  70. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  71. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9

    CAS  PubMed  Google Scholar 

  73. Hammond SM (2007) MicroRNAs as tumor suppressors. Nat Genet 39:582–583

    CAS  PubMed  Google Scholar 

  74. Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    CAS  PubMed  Google Scholar 

  75. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    CAS  PubMed  Google Scholar 

  76. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69:7495–7498

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223:102–115

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  79. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    CAS  PubMed  Google Scholar 

  80. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    CAS  PubMed  Google Scholar 

  81. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gallo A, Locatelli F (2012) ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Camb Philos Soc 87:95–110

    PubMed  Google Scholar 

  83. Gu J, Iyer VR (2006) PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 7:R42

    PubMed  PubMed Central  Google Scholar 

  84. Yu Z, Li Z, Jolicoeur N, Zhang L, Fortin Y, Wang E, Wu M, Shen S-H (2007) Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers. Nucleic Acids Res 35:4535–4541

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251:499–505

    PubMed  Google Scholar 

  86. Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14:1276–1283

    CAS  PubMed  Google Scholar 

  87. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11:R6

    PubMed  PubMed Central  Google Scholar 

  88. Laganà A, Forte S, Giudice A, Arena MR, Puglisi PL, Giugno R, Pulvirenti A, Shasha D, Ferro A (2009) miRò: a miRNA knowledge base. Database (Oxford) 2009:bap008

    Google Scholar 

  89. Hoffmann R (2008) A wiki for the life sciences where authorship matters. Nat Genet 40:1047–1051

    CAS  PubMed  Google Scholar 

  90. Barbarotto E, Schmittgen TD, Calin GA (2008) MicroRNAs and cancer: profile, profile, profile. Int J Cancer 122:969–977

    CAS  PubMed  Google Scholar 

  91. Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35:D747–D750

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hausser J, Berninger P, Rodak C, Jantscher Y, Wirth S, Zavolan M (2009) MirZ: an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 37:W266–W272

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller R-U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, Vita GD, Frezzetti D, Trompeter H-I, Hornung V, Teng G, Hartmann G, Palkovits M, Lauro RD, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69

    PubMed  PubMed Central  Google Scholar 

  97. Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H (2010) dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 11(Suppl 4):S5

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183

    CAS  PubMed  Google Scholar 

  99. Shalgi R, Lieber D, Oren M, Pilpel Y (2007) Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput Biol 3:e131

    PubMed  PubMed Central  Google Scholar 

  100. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    CAS  PubMed  Google Scholar 

  101. Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5:854–867

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chien C-H, Sun Y-M, Chang W-C, Chiang-Hsieh P-Y, Lee T-Y, Tsai W-C, Horng J-T, Tsou A-P, Huang H-D (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 39:9345–9356

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kawaji H, Severin J, Lizio M, Waterhouse A, Katayama S, Irvine KM, Hume DA, Forrest AR, Suzuki H, Carninci P, Hayashizaki Y, Daub CO (2009) The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biol 10:R40

    PubMed  PubMed Central  Google Scholar 

  104. Yamashita R, Wakaguri H, Sugano S, Suzuki Y, Nakai K (2009) DBTSS provides a tissue specific dynamic view of Transcription Start Sites. Nucleic Acids Res 38:D98–D104

    PubMed  PubMed Central  Google Scholar 

  105. Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bandyopadhyay S, Bhattacharyya M (2010) PuTmiR: a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinform 11:190

    Google Scholar 

  107. Lai X, Schmitz U, Gupta S, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J (2012) Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 40:8818–8834

    Google Scholar 

  108. Friard O, Re A, Taverna D, Bortoli MD, Cora’ D (2010) CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinform 11:435

    Google Scholar 

  109. Bandyopadhyay S, Mitra R (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics 25:2625–2631

    CAS  PubMed  Google Scholar 

  110. Le Bechec A, Portales-Casamar E, Vettter G, Moes M, Zindy P-J, Saumet A, Arenillas D, Theillet C, Wasserman W, Lecellier C-H, Friederich E (2011) MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in meta-regulation network model. BMC Bioinform 12:67

    Google Scholar 

  111. Portales-Casamar E, Arenillas D, Lim J, Swanson MI, Jiang S, McCallum A, Kirov S, Wasserman WW (2009) The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences. Nucleic Acids Res 37:D54–D60

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman WW, Sandelin A (2009) JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res 38:D105–D110

    PubMed  PubMed Central  Google Scholar 

  113. Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW (2007) oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res 35:W245–W252

    PubMed  PubMed Central  Google Scholar 

  114. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chaurasia G, Malhotra S, Russ J, Schnoegl S, Hanig C, Wanker EE, Futschik ME (2009) UniHI 4: new tools for query, analysis and visualization of the human protein-protein interactome. Nucleic Acids Res 37:D657–D660

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hubbard TJP, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P (2009) Ensembl 2009. Nucleic Acids Res 37:D690–D697

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Le Béchec A, Zindy P, Sierocinski T, Petritis D, Bihouée A, Le Meur N, Léger J, Théret N (2008) M@IA: a modular open-source application for microarray workflow and integrative datamining. In Silico Biol 8:63–69

    Google Scholar 

  118. Friedman Y, Naamati G, Linial M (2010) MiRror: a combinatorial analysis web tool for ensembles of microRNAs and their targets. Bioinformatics 26:1920–1921

    CAS  PubMed  Google Scholar 

  119. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, Linsley PS, Cleary MA (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Subramanian A (2005) From the cover: gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550

    CAS  PubMed  Google Scholar 

  122. Perez-Iratxeta C, Bork P, Andrade-Navarro MA (2007) Update of the G2D tool for prioritization of gene candidates to inherited diseases. Nucleic Acids Res 35:W212–W216

    PubMed  PubMed Central  Google Scholar 

  123. Bartonicek N, Enright AJ (2010) SylArray: a web server for automated detection of miRNA effects from expression data. Bioinformatics 26:2900–2901

    CAS  PubMed  Google Scholar 

  124. van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5:1023–1025

    PubMed  PubMed Central  Google Scholar 

  125. Brigand KL, Robbe-Sermesant K, Mari B, Barbry P (2010) MiRonTop: mining microRNAs targets across large scale gene expression studies. Bioinformatics 26:3131–3132

    PubMed  Google Scholar 

  126. Lu M, Shi B, Wang J, Cao Q, Cui Q (2010) TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC Bioinform 11:419

    Google Scholar 

  127. Sales G, Coppe A, Bisognin A, Biasiolo M, Bortoluzzi S, Romualdi C (2010) MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res 38:W352–W359

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mituyama T, Yamada K, Hattori E, Okida H, Ono Y, Terai G, Yoshizawa A, Komori T, Asai K (2009) The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res 37:D89–D92

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, Lopez R, Goble CA (2010) BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Res 38:W689–W694

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD (2005) ASRP: the Arabidopsis Small RNA Project Database. Nucleic Acids Res 33:D637–D640

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M, Thiesen H-J, Zettl UK (2012) Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 45:520–535

    CAS  PubMed  Google Scholar 

  132. Yauk CL, Rowan-Carroll A, Stead JD, Williams A (2010) Cross-platform analysis of global microRNA expression technologies. BMC Genomics 11:330

    PubMed  PubMed Central  Google Scholar 

  133. Ritchie W, Flamant S, Rasko JEJ (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398

    CAS  PubMed  Google Scholar 

  134. Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886

    CAS  PubMed  Google Scholar 

  135. Mendes ND, Freitas AT, Sagot M-F (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of US and OW was supported by the German research foundation (DFG, Project: WO 991/4-1) and the German Federal Ministry of Education and Research (BMBF) as part of the project e:Bio-Metsys. We would like to thank Michael Hecker for fruitful discussions on this topic as well as Julio Vera and Xin Lai for continuous mutual encouragement and for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmitz, U., Wolkenhauer, O. (2013). Web Resources for microRNA Research. In: Schmitz, U., Wolkenhauer, O., Vera, J. (eds) MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, vol 774. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5590-1_12

Download citation

Publish with us

Policies and ethics