Skip to main content
  • 2209 Accesses

Abstract

Scattering of light and electron beam by Hydrogen atom should be described by the coupled Maxwell–Schrödinger equations. However, the coupled equations are nonlinear, and so the calculations can be done only by perturbation procedure neglecting the self action; i.e., in the Born approximation. This approximation leads to some inconsistency breaking the charge conservation law, which should be fixed in a true nonlinear approach.

The corresponding scattering cross sections are similar to the classical ones given by the Thomson and Rutherford formulas respectively.

The calculation of the scattering of light relies on the limiting amplitude principle and the limiting absorption principle, which allow to explain the Einstein’s rules for the photoelectric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. M. Abraham, Theorie der Elektrizität, Bd. 2: Elektromagnetische Theorie der Strahlung (Teubner, Leipzig, 1905)

    Google Scholar 

  2. V. Bach, F. Klopp, H. Zenk, Mathematical analysis of the photoelectric effect. Adv. Theor. Math. Phys. 5(6), 969–999 (2001)

    MathSciNet  MATH  Google Scholar 

  3. R. Becker, Electromagnetic Fields and Interactions, Vol. I, II: Quantum Theory of Atoms and Radiation (Blaisdell, Boston, 1964)

    Google Scholar 

  4. M. Born, Atomic Physics (Blackie, London, 1951)

    MATH  Google Scholar 

  5. O. Costin, R.D. Costin, J.L. Lebowitz, A. Rokhlenko, Evolution of a model quantum system under time periodic forcing: conditions for complete ionization. Commun. Math. Phys. 221(1), 1–26 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. O. Costin, R.D. Costin, J.L. Lebowitz, Time asymptotics of the Schrödinger wave function in time-periodic potentials. J. Stat. Phys. 116(1–4), 283–310 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. O. Costin, J.L. Lebowitz, C. Stucchio, Ionization in a 1-dimensional dipole model. Rev. Math. Phys. 20(7), 835–872 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Costin, J.L. Lebowitz, C. Stucchio, S. Tanveer, Exact results for ionization of model atomic systems. J. Math. Phys. 51(1), 015211 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Griesemer, H. Zenk, On the atomic photoeffect in non-relativistic QED. arXiv:0910.1809

  10. A. Komech, H. Spohn, Long-time asymptotics for the coupled Maxwell–Lorentz equations. Commun. Partial Differ. Equ. 25, 558–585 (2000)

    Article  MathSciNet  Google Scholar 

  11. H.A. Kramers, The quantum theory of dispersion. Nature 113, 673–676 (1924) [pp. 177–180 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  Google Scholar 

  12. H.A. Kramers, The law of dispersion and Bohr’s theory of spectra. Nature 114, 310–311 (1924) [pp. 199–202 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  Google Scholar 

  13. H.A. Kramers, W. Heisenberg, Über die Streuung von Strahlen durch Atome. Z. Phys. 31, 681–708 (1925) [English translation: On the dispersion of radiation by atoms, pp. 223–252 in: Sources in Quantum Mechanics, ed. B.L. van der Waerden, North-Holland, Amsterdam, 1967]

    Article  ADS  MATH  Google Scholar 

  14. H.A. Kramers, in La diffusion de la lumiere par les atomes, Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) (1927), pp. 545–557

    Google Scholar 

  15. R.L. Kronig, On the theory of the dispersion of X-rays. J. Opt. Soc. Am. 12, 547–557 (1926). doi:10.1364/JOSA.12.000547

    Article  ADS  Google Scholar 

  16. http://en.wikipedia.org/wiki/Kramers-Kronig_relation

  17. M. Reed, B. Simon, Methods of Modern Mathematical Physics (Academic Press, New York, 1980), II (1975), III (1979), IV (1978)

    MATH  Google Scholar 

  18. A. Rokhlenko, O. Costin, J.L. Lebowitz, Decay versus survival of a localized state subjected to harmonic forcing: exact results. J. Phys. A, Math. Gen. 35(42), 8943–8951 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. Sommerfeld, Atombau und Spektrallinien, Vol. I and II (Vieweg, Braunschweig, 1951)

    Google Scholar 

  20. A. Sommerfeld, G. Schur, Ann. Phys. 4, 409 (1930)

    Article  MATH  Google Scholar 

  21. G. Wentzel, Z. Phys. 43(1), 779 (1927)

    Article  ADS  MATH  Google Scholar 

  22. H. Zenk, Ionisation by quantised electromagnetic fields: the photoelectric effect. Rev. Math. Phys. 20, 367–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komech, A. (2013). Scattering of Light and Particles. In: Quantum Mechanics: Genesis and Achievements. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5542-0_8

Download citation

Publish with us

Policies and ethics