Skip to main content

Molecular Biology and Physiology of the Resurrection Glacial Relic Haberlea Rhodopensis

  • Chapter
  • First Online:
Biotechnology of Neglected and Underutilized Crops

Abstract

Haberlea rhodopensis is a glacial relic with impressive tolerance to desiccation and freezing stress. It is mainly known as an ornamental plant and its other potential uses were largely neglected. Transcriptome analyses by next generation sequencing and cDNA–AFLP technologies identified transcription factors, stress-related and novel genes that could contribute to drought tolerance. These recent molecular studies have raised possibilities of gene discovery for crop improvement and established H. rhodopensis as one of the models to study desiccation tolerance. Furthermore, the abundant secondary metabolites of H. rhodopensis are rich sources of compounds with medicinal properties. Extracts from Haberlea possess radioprotective, anticlastogenic and antioxidant activities and can stimulate regeneration of human fibroblasts in vitro. All this has rejuvenated the interest in H. rhodopensis and indicated potential applications of this species in biology and medicine.

Maria Benina and Veselin Petrov authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLP:

Amplified fragment length polymorphism

ELIPs:

Early-light inducible proteins/genes

ESC:

Expressed sequence contigs

GABA:

Îł-aminobutyric acid

LEA:

Late embryogenesis-abundant proteins

NGS:

Next generation sequencing

ROS:

Reactive oxygen species

RWC:

Relative water content

References

  • Alamillo J, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci 160:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Bitrián M, Bartels D et al (2011) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Sig Behav 6:243–250

    Article  Google Scholar 

  • Bartels D, Hussain S (2011) Resurrection plants: physiology and molecular biology. In: LĂĽttge U, Beck E, Bartels D (eds), Plant desiccation tolerance ecological studies, vol 215. Springer, Berlin, pp 339–364

    Google Scholar 

  • Dell’acqua G, Schweikert K (2012) Skin benefits of a myconoside-rich extract from resurrection plant Haberlea rhodopensis. Int J Cosmet Sci 34:132–139

    Article  PubMed  Google Scholar 

  • Djilianov D, Genova G, Parvanova D et al (2005) In vitro culture of the resurrection plant Haberlea rhodopensis. Plant Cell Tiss Org 80:115–118

    Article  CAS  Google Scholar 

  • Ebrahimi S, Gafner F, Dell’Acqua G et al (2011) Flavone 8-C-glycosides from Haberlea rhodopensis Friv (Gesneriaceae). Helv Chim Acta 94:38–45

    Article  CAS  Google Scholar 

  • Farrant J, Brandt W, Lindsey G (2007) An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1:72–84

    Google Scholar 

  • Farrant J, Vander Willigen C, Loffell DA et al (2003) An investigation into the role of light during desiccation of three angiosperm resurrection plants. Plant Cell Environ 26:1275–1286

    Article  CAS  Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in southern Africa. Science 174:1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Ganchev I (1950) Anabiotic dry tenacity and other biological particularities of Haberlea rhodopensis. Rep Inst Bot Bulg Acad Sci 1:191–214

    Google Scholar 

  • Gechev TS, Benina M, Obata T, Tohge T, Sujeeth N, Minkov I, Hille J, Temanni MR, Marriott AS, Bergström E, Thomas-Oates J, Antonio C, Mueller-Roeber B, Schippers JH, Fernie AR, Toneva V (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol Life Sci 70:689–709

    Article  PubMed  CAS  Google Scholar 

  • Georgieva K, Sigeti Z, Sarvari E et al (2007) Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 225:955–964

    Article  PubMed  CAS  Google Scholar 

  • Georgieva K, Lenk S, Buschmann C (2008) Responses of the resurrection plant Haberlea rhodopensis to high irradiance. Photosynthetica 46:208–215

    Article  Google Scholar 

  • Georgieva K, Sarvari E, Keresztes A (2010) Protection of thylakoid against combined light and drought by a lumenal substance in the resurrection plant Haberlea rhodopensis. Ann Bot 105:117–126

    Article  PubMed  CAS  Google Scholar 

  • Georgieva T, Christov N, Djilianov D (2011) Identification of desiccation-regulated genes by cDNA-AFLP in Haberlea rhodopensis: a resurrection plant. Acta Physiol Plant 34:1055–1066

    Article  Google Scholar 

  • Hoekstra F (2005) Differential longevities in desiccated anhydrobiotic plant systems. Integr Comp Biol 45:725–733

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra F, Golovina E, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Beckett R, Wornik S et al (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Le T, McQueen-Mason S (2006) Dessiccation-tolĂ©rant plants in dry environments. Rev Environ Sci Biotechnol 5:269–279

    Article  CAS  Google Scholar 

  • Moon B, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Popov B, Georgieva S, Gedjeva V, Petrov V (2011) Radioprotective anticlastogenic and anti-oxidant effects of total extract of Haberlea rhodopensis on rabbit blood samples exposed to gamma radiation in vitro. Revue de MĂ©decine VĂ©tĂ©rinaire 162:34–39

    Google Scholar 

  • Renault H, Roussel V, El Amrani A et al (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol 10:20

    Article  PubMed  Google Scholar 

  • Renault H, El Amrani A, Palanivelu R et al (2011) GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol 52:894–908

    Article  PubMed  CAS  Google Scholar 

  • Scott P (2000) Resurrection plants and the secret of eternal leaf. Ann Bot 85:159–166

    Article  CAS  Google Scholar 

  • Sherwin H, Farrant J (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscose. Plant Growth Regul 24:203–210

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Thomson W, Platt K (1997) Conservation of cell order in desiccated mesophyll of Selaginella lepidophylla ([hook and grev] spring). Ann Bot 79:439–447

    Article  Google Scholar 

  • Vander Willigen C, Pammenter N, Mundree S, Farrant J (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3; 1 and/or compartmentalization of subcellular components and metabolites play a role? J Exp Bot 55:651–661

    Article  PubMed  CAS  Google Scholar 

  • VicrĂ© M, Farrant J, Driouich A (2004a) Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species. Plant Cell Environ 27:1329–1340

    Article  Google Scholar 

  • VicrĂ© M, Lerouxel O, Farrant J et al (2004b) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120:229–239

    Article  PubMed  Google Scholar 

  • Yahubyan G, Gozmanova M, Denev I et al (2009) Prompt response of superoxide dismutase and peroxidase to dehydration and rehydration of the resurrection plant Haberlea rhodopensis. Plant Growth Regul 57:49–56

    Article  CAS  Google Scholar 

  • Zonneveld B, Leitch I, Bennett M (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by EC FP7 (project Biosupport 245588), University of Plovdiv Research Fund (project BF006), NSF of Bulgaria, project DO2-1068, and the Swiss Enlargement Contribution in the framework of the Bulgarian-Swiss Research Programme, SNSF project No. IZEBZ0_143003/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsanko Gechev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benina, M., Petrov, V., Toneva, V., Teneva, A., Gechev, T. (2013). Molecular Biology and Physiology of the Resurrection Glacial Relic Haberlea Rhodopensis . In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_4

Download citation

Publish with us

Policies and ethics