Skip to main content

Energy Considerations of Photobioreactors

  • Chapter
  • First Online:
Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

Microalgae have been proven to be a potential source for valuable compounds and fuels. However, photobioreactors are not optimized concerning economic aspects. The energy demand of the reactor could be in the same order of magnitude as the harvested incident solar irradiation stored as chemical energy bound in microalgal biomass. Therefore hydrodynamics as a key parameter influences not only the auxiliary energy need and the mass transfer of dissolved gases (CO2/O2) as well as the temperature profile by mixing, but also the light availability for the cells by moving them through light gradients. The physiological reactions of the algae determine the attainable PCE (photo-conversion efficiency) of solar light energy into biomass with a theoretical limit of 12.6 % and show the necessity of light dilution. Recent reactor systems like tubular and plate systems as well as new designs are described underlining the need of reducing reactor and maintenance costs and combining efficient concepts. Photobioreactors have to be considered in a generalized approach by superposition of fluid flow, light field and physiological cell reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Acien Fernandez FG, Hall DO, Canizares Guerrero E, Krishna Rao K, Molina Grima E (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 103(2):137–152

    Article  CAS  Google Scholar 

  • Algatechnologies Ltd. (2010) http://www.algatech.com. Retrieved 23 Oct 2010, Kibbutz Ketura, Israel

  • Algenol (2011) http://www.algenolbiofuels.com/overview.htm. Retrieved 8 Nov 2011, Bonita Springs, FL, USA

  • Algomed (2011) Roquette Klötze GmbH & Co. KG http://www.algomed.de/index.php?op=algenfarm_anlage. Retrieved 8 Nov 2011, Klötze, Germany

  • ANDRITZ KMPT GmbH (2011) http://www.kmpt.com/nc/produkte/krauss-maffei-filter/. Retrieved 08 Nov 2011, Vierkirchen, Germany

  • Babcock RW, Malda J, Radway JC (2002) Hydrodynamics and mass transfer in a tubular airlift photobioreactor. J Appl Phycol 14(3):169–184

    Article  CAS  Google Scholar 

  • Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82(2):170–179

    Article  CAS  Google Scholar 

  • BASF (2010) http://www.micronal.de/portal/basf/ide/dt.jsp?setCursor=1_286688. Retrieved 23 Oct 2010

  • Baumert HZ, Petzoldt T (2008) The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light–dark acclimation in phytoplankton. Limnologica 38(3–4):313–326

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321

    Article  CAS  Google Scholar 

  • Brindley Alías C, García-Malea López MC, Acién Fernández FG, Ferníndez Sevilla JM, García Sánchez JL, Molina Grima E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87(6):723–733

    Article  Google Scholar 

  • Camacho Rubio F, Acién Fernández FG, Sánchez Pérez JA, García Camacho F, Molina Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86

    Article  Google Scholar 

  • Camacho Rubio F, Sánchez Mirón A, Cerón García MC, García Camacho F, Molina Grima E, Chisti Y (2004) Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chem Eng Sci 59(20):4369–4376

    Article  CAS  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943

    Article  Google Scholar 

  • Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Article  CAS  Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  • Earthrise Nutritionals LLC (2009) http://www.earthrise.com/farm.html. Retrieved 24 Feb 2010, Irvine, CA, USA

  • Eriksen N (2008) The technology of microalgal culturing. Biotechnol Lett 30(9):1525–1536

    Article  CAS  Google Scholar 

  • Evodos BV (2011) http://www.evodos.eu/market-specific-solutions/totally-dewatering-algae.html. Retrieved 08 Nov 2011, Breda, The Netherlands

  • Fan LH, Zhang YT, Cheng LH, Zhang L, Tang DS, Chen HL (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem Eng Technol 30(8):1094–1099

    Article  CAS  Google Scholar 

  • Gardemann R (2005) PAM Jam III http://www.zealquest.com/upload/product/walz/-training/PAM-Jam%20III%20Yield,ETR,RLC.pdf. Retrieved 23 Oct 2010

  • Grobbelaar J, Nedbal L, Tichý V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8(4):335–343

    Article  CAS  Google Scholar 

  • Hall DO, Fernandez FGA, Guerrero EC, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73

    Article  CAS  Google Scholar 

  • Hankamer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O (2007) Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale-up. Physiol Plant 131(1):10–21

    Article  CAS  Google Scholar 

  • IGV GmbH Potsdam (2011) http://www.igv-gmbh.com/news/press/worldwide-largest-closed-algae-production-plant.html. Retrieved 8 Nov 2011, Nuthetal OT Bergholz-Rehbrücke, Germany

  • Janssen M, Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 78(2):123–137

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413

    Article  CAS  Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotech 20(3):280–285

    Article  CAS  Google Scholar 

  • Luo HP, Al-Dahhan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85(4):382–393

    Article  CAS  Google Scholar 

  • Merchuk JC, García Camacho F, Molina Grima E (2007a) Photobioreactor design and fluid dynamics. Chem Biochem Eng Q 21(4):345–355

    CAS  Google Scholar 

  • Merchuk JC, Rosenblat Y, Berzin I (2007b) Fluid flow and mass transfer in a counter-current gas–liquid inclined tubes photo-bioreactor. Chem Eng Sci 62(24):7414–7425

    Article  CAS  Google Scholar 

  • Molina Grima E, Fernandez FGA, Garcia Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70(1–3):231–247

    Article  CAS  Google Scholar 

  • Molina Grima EM, Fernandez FGA, Camacho FG, Camacho Rubio FC, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12(3–5):355–368

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29(1):24–27

    Article  CAS  Google Scholar 

  • Oncel S, Sukan FV (2008) Comparison of two different pneumatically mixed column photobioreactors for the cultivation of Arthrospira platensis (Spirulina platensis). Bioresour Technol 99(11):4755–4760

    Article  CAS  Google Scholar 

  • Perner-Nochta I, Posten C (2007) Simulations of light intensity variation in photobioreactors. J Biotechnol 131(3):276–285

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Proviron (2010) http://www.proviron.com/product-groups/microalgae. Retrieved 23 Oct 2010, Hemiksem, Belgium

  • Pruvost J, Cornet JF, Legrand J (2008) Hydrodynamics influence on light conversion in photobioreactors: an energetically consistent analysis. Chem Eng Sci 63(14):3679–3694

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biot 57(3):287–293

    Article  CAS  Google Scholar 

  • Radzinski D (2010) Algenol. In: WorldBiofuelsMarket 2010, Amsterdam, the Netherlands

    Google Scholar 

  • Richmond A, Zhang C-W, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20(4–6):229–236

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Rossignol N, Vandanjon L, Jaouen P, Quéméneur F (1999) Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration. Aquac Eng 20(3):191–208

    Article  Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1–3):249–270

    Article  Google Scholar 

  • Sánchez Mirón A, García Camacho F, Contreras Gómez A, Molina Grima E, Chisti Y (2000) Bubble-column and airlift photobioreactors for algal culture. AICHE J 46(9):1872–1887

    Article  Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energ Convers Manag 47(6):791–799

    Article  CAS  Google Scholar 

  • Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1–3):136–147

    Article  CAS  Google Scholar 

  • Spalding MH (1989) Photosynthesis and photorespiration in freshwater green algae. Aquat Bot 34(1–3):181–209

    Article  CAS  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59(7):1463–1473

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28(2):126–128

    Article  CAS  Google Scholar 

  • Subitec GmbH (2010) http://www.subitec.com. Retrieved 23rd Oct 2010, Stuttgart, Germany.

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    Article  CAS  Google Scholar 

  • Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT Patent Application WO 2004/074423 A2

    Google Scholar 

  • Ugwu CU, Ogbonna JC, Tanaka H (2005) Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol Lett 27(2):75–78

    Article  CAS  Google Scholar 

  • van Aken MV (2010) Harvesting, Dewatering and Extraction. In: WorldBiofuelsMarket 2010, Amsterdam, the Netherlands

    Google Scholar 

  • Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol 169(1):95–108

    Article  CAS  Google Scholar 

  • Walker D (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21(5):509–517

    Article  Google Scholar 

  • Wang C, Sun Y, Xing R, Sun L (2005) Effect of liquid circulation velocity and cell density on the growth of Parietochloris incisa in flat plate photobioreactors. Biotechnol Bioprocess E 10(2):103–108

    Article  CAS  Google Scholar 

  • Weyer K, Bush D, Darzins A, Willson B (2010) Theoretical maximum algal Oil production. BioEnerg Res 3(2):204–213

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  CAS  Google Scholar 

  • Wijffles R (2010) AlgaePARC Algae production and Research Centre. In: WorldBiofuelsMarket 2010, Amsterdam, the Netherlands

    Google Scholar 

  • Willson B (2009) Low-cost Photobioreactors for Production of Algae-Biofuels. In: GTOBiofuels, San Francisco, CA

    Google Scholar 

  • Yoshimoto N, Sato T, Kondo Y (2005) Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol 17(3):207–214

    Article  CAS  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech 19(2):153–159

    Article  CAS  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61(1):235–261

    Article  CAS  Google Scholar 

  • Zou N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 12(3):349–354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Posten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacobi, A., Posten, C. (2013). Energy Considerations of Photobioreactors. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_13

Download citation

Publish with us

Policies and ethics