Skip to main content

A Micromechanical Viscoelastic Constitutive Model for Native and Engineered Anterior Cruciate Ligaments

  • Conference paper
Computer Models in Biomechanics

Abstract

Ligaments and tendons are soft tissues that are largely composed of aligned collagen and elastin. Due to this microstructure, they have nonlinear viscoelastic responses. We have developed a micromechanical constitutive model to capture the inhomogeneous, nonlinear viscoelastic properties of native ACL and of a tissue engineered ligament graft upon explantation. This constitutive model incorporates a viscoelastic collagen network and a nonlinear elastic elastin network. The model captures the nonlinear viscoelastic responses of these tissues using a limited number of parameters that can be interpreted in terms of physical properties of the collagen fibers and elastin. The parameters used to model the tissue engineered ligament response are similar to those found for the native ACL, indicating that the microstructure of the tissue engineered ligament graft has developed in vivo to match that of the native ACL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2000) Finite element modelling of human skin using a non-linear elastic constitutive model. J Biomech 33:645–652

    Article  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2001) A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem Technol 74:541–559

    Article  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2002a) Finite element simulations of orthotropic hyperelasticity. Finite Elem Anal Des 38:983–998

    Article  MATH  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2002b) A microstructurally based orthotropic hyperelastic constitutive law. J Appl Mech 69:570–579

    Article  MATH  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2002c) Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. J Appl Mech 69:198–201

    Article  MATH  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3:56–65

    Article  Google Scholar 

  • Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523

    Article  Google Scholar 

  • Boyce MC, Arruda EM (2001) Swelling and mechanical stretching of elastomeric materials. Math Mech Solids 6:641–659

    Article  MATH  Google Scholar 

  • Butler DL, Guan Y, Kay MD, Cummings JF (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25:511–518

    Article  Google Scholar 

  • Corr DT, Strarr MJ, Vanderby RJ, Best TM (2001) A nonlinear generalized maxwell fluid model for viscoelastic materials. J Appl Mech 68:787–790

    Article  MATH  Google Scholar 

  • Danto MI, Woo SL-Y (1993) The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 11:58–67

    Article  Google Scholar 

  • Duenwald SE, Vanderby RJ, Lakes RS (2009) Viscoelastic relaxation and recovery of tendon. Ann Biomed Eng 37:1131–1140

    Article  Google Scholar 

  • Duenwald SE, Vanderby RJ, Lakes RS (2010) Stress relaxation and recovery in tendon and ligament: experiment and modeling. Biorheology 47:1–14

    Google Scholar 

  • Fan H, Liu H, Wong EJW, Toh SL, Goh JCH (2008) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials 29:3324–3337

    Article  Google Scholar 

  • Fung YC (1972) Stress strain history relations of soft tissues in simple elongation. In: Fung YC, Perrone N, Anliker M (eds) Biomechanics: its foundations and objectives. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Goulet F, Rancourt D, Cloutier R, Tremblay P, Belzil AM, Lamontagne J, Bouchard M, Tremblay J, Stevens L, Labrosse J, Langelier E, McKee MD (2004) Torn ACL: a new bioengineered substitute brought from the laboratory to the knee joint. Appl Bionics Biomech 1:115–121

    Article  Google Scholar 

  • Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, Simon TM (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21:176–185

    Article  Google Scholar 

  • Ma J, Narayanan H, Garikipati K, Grosh K, Arruda EM (2010) Experimental and computational investigation of viscoelasticity of native and engineered ligament and tendon. In: Garikipati K, Arruda EM (eds) Proceedings of the IUTAM symposium on cellular, molecular and tissue mechanics. Springer, New York, pp 3–17

    Chapter  Google Scholar 

  • Ma J, Smietana MJ, Kostrominova TY, Wojtys EM, Larkin LM, Arruda EM (2012a) In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Tissue Eng Part A 18:103–116

    Article  Google Scholar 

  • Ma J, Smietana MJ, Swinehart IT, Kostrominova TY, Wellik DM, Wojtys EM, Larkin LM, Arruda EM (2012b) A comparison of tissue engineered scaffold-less bone-ligament-bone constructs and patellar tendon autografts used for anterior cruciate ligament replacement in sheep (submitted)

    Google Scholar 

  • MacKintosh FC, Käs J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425–4428

    Article  Google Scholar 

  • Moffat KL, Sun WH, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu H (2008) Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci USA 105:7947–7952

    Article  Google Scholar 

  • NationalSurvey (2004) National ambulatory medical care survey. Available on the American Association of Orthopaedic Surgeons web page at aaos.org. National Center for Health Statistics

  • Palmer JS, Boyce MC (2008) Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomater 4:597–612

    Article  Google Scholar 

  • Palmer JS, Castro CE, Arslan M, Boyce MC (2010) Constitutive models for the force-extension behavior of biological filaments. In: Garikipati K, Arruda EM (eds) Proceedings of the IUTAM symposium on cellular, molecular and tissue mechanics. Springer, New York, pp 141–159

    Chapter  Google Scholar 

  • Pioletti DP, Rakotomanana LR, Benvenuti J-F, Leyvraz P-F (1998) Viscoelastic constitutive law in large deformations: application to human ligaments and tendons. J Biomech 31:753–757

    Article  Google Scholar 

  • Provenzano P, Lakes RS, Keenan T, Vanderby R (2001) Non-linear ligament viscoelasticity. Ann Biomed Eng 28:908–914

    Article  Google Scholar 

  • Provenzano PP, Lakes RS, Corr DT, Vanderby R Jr (2002) Application of nonlinear viscoelastic models to describe ligament behavior. Biomech Model Mechanobiol 1:45–57

    Article  Google Scholar 

  • Roos EM (2005) Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol 17:195–200

    Article  Google Scholar 

  • Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 9:743–765

    Article  Google Scholar 

  • Shen ZL, Kahn H, Ballarini R, Eppell SJ (2011) Viscoelastic properties of isolated collagen fibrils. Biophys J 100:3008–3015

    Article  Google Scholar 

  • Sopakayang R, Vita RD, Kwansa A, Freeman JW (2012) Elastic and viscoelastic properties of a type I collagen fiber. J Theor Biol 293:197–205

    Article  Google Scholar 

  • Tang CY, Ng GY, Wang ZW, Tsui CP, Zhang G (2011) Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM. Bio-Med Mat Eng 21:9–24

    Google Scholar 

  • von Lockette PR, Arruda EM (1999a) A network description of the non-Gaussian stress-optic and Raman scattering responses of elastomer networks. Acta Mech 134:81–107

    Article  MATH  Google Scholar 

  • von Lockette PR, Arruda EM (1999b) Topological studies of bimodal networks. Macromolecules 32:1990–1999

    Article  Google Scholar 

  • von Lockette PR, Arruda EM (2001) Computational annealing of simulated unimodal and bimodal networks. Comput Theor Polymer Sci 11:415–428

    Article  Google Scholar 

  • von Lockette PR, Arruda EM (2002) Mesoscale modeling of bimodal elastomer networks: constitutive and optical theories and results. Macromolecules 35:7100–7109

    Article  Google Scholar 

  • Weiss JA, Gardiner JC (2001) Computational modeling of ligament mechanics. Crit Rev Biomed Eng 29:303–371

    Article  Google Scholar 

  • Wilder FV, Hall BJ, Barrett JP Jr, Lemrow NB (2002) History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. Osteoarthr Cartil 10:611–616

    Article  Google Scholar 

  • Yang L, van der Werf KO, Dijkstra PJ, Bennink JFML (2012) Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Beh Biomed Mat 6:148–158

    Article  Google Scholar 

Download references

Acknowledgements

We thank MICHR and Coulter Foundation for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Arruda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ma, J., Arruda, E.M. (2013). A Micromechanical Viscoelastic Constitutive Model for Native and Engineered Anterior Cruciate Ligaments. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics