Skip to main content

Activation Models for the Numerical Simulation of Cardiac Electromechanical Interactions

  • Conference paper
Computer Models in Biomechanics

Abstract

This contribution addresses the mathematical modeling and numerical approximation of the excitation-contraction coupling mechanisms in the heart. The main physiological issues are preliminarily sketched along with an extended overview to the relevant literature. Then we focus on the existing models for the electromechanical interaction, paying special attention to the active strain formulation that provides the link between mechanical response and electrophysiology. We further provide some critical insight on the expected mathematical properties of the model, the ability to provide physiological results, the accuracy and computational cost of the numerical simulations. This chapter ends with a numerical experiment studying the electromechanical coupling on the anisotropic myocardial tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://hpc-dit.epfl.ch/clusters/callisto.php.

References

  • Ambrosi D, Pezzuto S (2012) Active strain vs. active stress in mechanobiology: constitutive issues. J Elast 107:121–199

    Article  MathSciNet  Google Scholar 

  • Ambrosi D, Arioli G, Nobile F, Quarteroni A (2011) Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J Appl Math 71:605–621

    Article  MathSciNet  MATH  Google Scholar 

  • Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol, Heart Circ Physiol 295:H610–H618

    Article  Google Scholar 

  • Bueno-Orovio A, Cherry EM, Fenton FH (2008) Minimal model for human ventricular action potential in tissue. J Theor Biol 253:544–560

    Article  Google Scholar 

  • CellML (2000) (Language for storing and exchange of computer-based mathematical models). www.cellml.org

  • Chapelle D, Fernandez MA, Gerbeau JF, Moireau P, Sainte-Marie J, Zemzemi N (2009) Numerical simulation of the electromechanical activity of the heart. Lect Notes Comput Sci 5528:357–365

    Article  Google Scholar 

  • Cherubini C, Filippi S, Nardinocchi P, Teresi L (2008) An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog Biophys Mol Biol 97:562–573

    Article  Google Scholar 

  • Colli Franzone P, Pavarino LF (2004) A parallel solver for reaction-diffusion systems in computational electro-cardiology. Math Models Methods Appl Sci 14:883–911

    Article  MathSciNet  MATH  Google Scholar 

  • Continuity (2005) (A problem-solving environment for multi-scale modeling in bioengineering and physiology). www.continuity.ucsd.edu/Continuity

  • Costa KD, Holmes JW, McCulloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond A 359:1233–1250

    Article  MATH  Google Scholar 

  • Evangelista A, Nardinocchi P, Puddu PE, Teresi L, Torromeo C, Varano V (2011) Torsion of the human left ventricle: Experimental analysis and computational modelling. Prog Biophys Mol Biol 107:112–121

    Article  Google Scholar 

  • Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Comput Mech 45:227–243

    Article  MathSciNet  MATH  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  • Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond A 367:3445–3475

    Article  MathSciNet  MATH  Google Scholar 

  • Iribe G, Helmes M, Kohl P (2007) Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol, Heart Circ Physiol 292:H1487–H1497

    Article  Google Scholar 

  • Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left ventricular epicardial myocyte. Biophys J 87:1507–1525

    Article  Google Scholar 

  • Kerckhoffs RCP, Healy SN, Usyk TP, McCulloch AD (2006) Computational methods for cardiac electromechanics. Proc IEEE 94:769–783

    Article  Google Scholar 

  • Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled parallel electromechanical model of the heart. Int J Numer Methods Biomed Eng 28:72–86

    Article  MathSciNet  MATH  Google Scholar 

  • Land S, Niederer SA, Smith NP (2012) Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Trans Biomed Eng 59:1219–1228

    Article  Google Scholar 

  • Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane-wave analysis. J Appl Phys 38:17–27

    Google Scholar 

  • LifeV (2001) (A parallel finite element library). www.lifev.org

  • Luo C, Rudy Y (1991) A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ Res 68:1501–1526

    Article  Google Scholar 

  • Menzel A, Waffenschmidt T (2009) A micro-sphere-based remodelling formulation for anisotropic biological tissues. Philos Trans R Soc Lond A 367:3499–3523

    Article  MathSciNet  MATH  Google Scholar 

  • Murtada S, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9:749–762

    Article  Google Scholar 

  • Nardinocchi P, Teresi L (2007) On the active response of soft living tissues. J Elast 88:27–39

    Article  MathSciNet  MATH  Google Scholar 

  • Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast 61:113–141

    Article  MathSciNet  MATH  Google Scholar 

  • Nash MP, Panfilov AV (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85:501–522

    Article  Google Scholar 

  • Nobile F, Quarteroni A, Ruiz-Baier R (2012) An active strain electromechanical model for cardiac tissue. Int J Numer Methods Biomed Eng 28:52–71

    Article  MathSciNet  MATH  Google Scholar 

  • Pathmanathan P, Whiteley JP (2009) A numerical method for cardiac mechanoelectric simulations. Ann Biomed Eng 37:860–873

    Article  Google Scholar 

  • Pathmanathan P, Chapman SJ, Gavaghan D, Whiteley JP (2010) Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q J Mech Appl Math 63:375–399

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray P, Osbourne JM, Walter A, Chapman SJ, Garny A, van Leeuwen IMM, Maini PK, Rodriguez B, Waters SL, Whiteley JP, Byrne HM, Gavaghan D (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180:2452–2471. www.cs.ox.ac.uk/chaste

    Article  MATH  Google Scholar 

  • Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799–811

    Article  Google Scholar 

  • Reumann M, Fitch BG, Rayshubskiy A, Keller D, Seemann G, Dossel O, Pitman MC, Rice JJ (2009) Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations. Proc IEEE 09:2795–2798

    Google Scholar 

  • Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95:2368–2390

    Article  Google Scholar 

  • Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41:743–757

    Article  Google Scholar 

  • Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2011) Active strain and activation models in cardiac electromechanics. In Brenn G, Holzapfel GA, Schanz M, Steinbach O (eds) Proc Appl Math Mech, vol 11, pp 119–120

    Google Scholar 

  • Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int J Numer Methods Biomed Eng 28:761–788

    Article  Google Scholar 

  • Rudy Y, Silva JR (2006) Computational biology in the study of cardiac ion channels and cell electrophysiology. Q Rev Biophys 39:57–116

    Article  Google Scholar 

  • Sermesant M (2003) Modèle électromécanique du coeur pour l’analyse d’image et la simulation. PhD Thesis, Université de Nice Sophia Antipolis, France

    Google Scholar 

  • Smerup M, Nielsen E, Agger P, Frandsen J, Vestergaard-Poulsen P, Andersen J, Nyengaard J, Pedersen M, Ringgaard S, Hjortdal V, Lunkenheimer PP, Anderson RH (2009) The three-dimensional arrangement of the myocytes aggregated together within the mammalian ventricular myocardium. Anat Rec 292:1–11

    Article  Google Scholar 

  • Smith NP, Nickerson DP, Crampin EJ, Hunter PJ (2004) Multiscale computational modelling of the heart. Acta Numer 13:371–431

    Article  MathSciNet  Google Scholar 

  • Taber LA, Perucchio R (2000) Modeling heart development. J Elast 61:165–197

    Article  MathSciNet  MATH  Google Scholar 

  • ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol, Heart Circ Physiol 286:H1573–H1589

    Article  Google Scholar 

  • Tung L (1978) A bi-domain model for describing ischemic myocardial D-C potentials. PhD Thesis, MIT, Cambridge, MA

    Google Scholar 

  • Usyk TP, Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elast 61:143–164

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The support by the European Research Council through the grant ‘Mathcard, Mathematical Modelling and Simulation of the Cardiovascular System’, ERC-2008-AdG 227058 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ruiz-Baier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ruiz-Baier, R., Ambrosi, D., Pezzuto, S., Rossi, S., Quarteroni, A. (2013). Activation Models for the Numerical Simulation of Cardiac Electromechanical Interactions. In: Holzapfel, G., Kuhl, E. (eds) Computer Models in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5464-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5464-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5463-8

  • Online ISBN: 978-94-007-5464-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics