Skip to main content

A Supervised Graph-Cut Deformable Model for Brain MRI Segmentation

  • Chapter
  • First Online:
Deformation Models

Abstract

Accurate automatic segmentation of subcortical brain structures in Magnetic Resonance Images (MRI) is of great interest in the analysis of developmental disorders. Segmentation methods based on a single or multiple atlases have been shown to suitably localize brain structures. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentation. A fully-automatic segmentation method for brain MRI is considered, which defines a deformable model combining an atlas-based segmentation strategy with a supervised Graph-cut model. The Graph-cut model is adapted to make it suitable for segmenting small and low-contrast brain structures by defining new data and boundary potentials of the energy function. In particular, information concerning the intensity and geometry is exploited, and supervised energies based on contextual brain structures are added. Furthermore, boundary detection is reinforced using a new multi-scale edgeness measure. The method is applied to the segmentation of the brain caudate nucleus in a set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as in a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures, and present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD. The obtained results show improved performance in terms of segmentation accuracy compared to state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.cabiatl.com/mricro/

  2. 2.

    www.cause07.org/

  3. 3.

    http://elastix.isi.uu.nl

References

  1. 3d slicer. http://www.slicer.org/

  2. Aljabar P, Heckemann R, Hammers A, Hajnal J, Rueckert D (2007) Classifier selection strategies for label fusion using large atlas databases. In: Ayache N, Ourselin S, Maeder A (eds): MICCAI 2007, Part I, Lecture notes in computer science, Springer, Heidelberg, pp 523–531

    Google Scholar 

  3. Ashburner J, Friston K (2005) Unified segmentation. NeuroImage 26:839–851

    Article  Google Scholar 

  4. Babalola KO, Petrovic V, Cootes TF, Taylor CJ, Twining CJ, Mills A (2007) Automatic segmentation of the caudate nuclei using active appearance models. Proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention: 3D Segmentation in the Clinic: A Grand Challenge, pp 57–64

    Google Scholar 

  5. Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, Smith S, Cootes T, Jenkinson M, Rueckert D (2009) An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuroimage 47:1435–1447

    Article  Google Scholar 

  6. Balafar M, Ramli A, Saripan M, Mashohor S (2010) Review of brain mri image segmentation methods. Artif Intell Rev 33:261–274

    Google Scholar 

  7. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n-d image segmentation. Int J Comput Vis 70(2):109–131

    Google Scholar 

  8. Boykov Y, Kolmogorov V (2001) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:359–374

    Google Scholar 

  9. Carmona S, Vilarroya O, Bielsa A, Trèmols V, Soliva JC, Rovira M, Tomàs J, Raheb C, Gispert J, Batlle S, Bulbena A (2005) Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett 389(2):88–93

    Google Scholar 

  10. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3d model-based neuroanatomical segmentation. Human Brain Mapping 3(3):190–208

    Google Scholar 

  11. Collins DL, Zijdenbos AP, Baaré WFC, Evans AC (1999) Animal+insect: improved cortical structure segmentation. In: IPMI, Springer, pp 210–223

    Google Scholar 

  12. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923

    Google Scholar 

  13. Duncan JS, Member S, Ayache N (2000) Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell 22:85–106

    Google Scholar 

  14. Escalera S, Fornés A, Pujol O, Lladós J, Radeva P (2010) Circular blurred shape model for multiclass symbol recognition. IEEE Trans Syst Man Cybern 41(2):497–506

    Google Scholar 

  15. Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J (1997) Volumetric mri analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601

    Article  Google Scholar 

  16. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Google Scholar 

  17. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dalea AM (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84

    Google Scholar 

  18. Freesurfer. http://surfer.nmr.mgh.harvard.edu/

  19. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammersc A (2006) Automatic anatomical brain mri segmentation combining label propagation and decision fusion. Neuroimage 33:115–126

    Article  Google Scholar 

  20. Igual L, Soliva JC, Hernandez-Vela A, Escalera S, Jimenez X, Vilarroya O, Radeva P (2012) A fully-automatic caudate nucleus segmentation of brain mri: application in pediatric attention-deficit/hyperactivity disorder volumetric analysis. BioMed Eng Online 10(105)

    Google Scholar 

  21. Iosifescu DV, Shenton ME, Warfield SK, Kikinis R, Dengler J, Jolesz FA, Mccarley RW (1997) An automated registration algorithm for measuring MRI subcortical brain structures. Neuroimage 6(1):13–25

    Article  Google Scholar 

  22. Kelemen A, Székely G, Gerig G (1999) Elastic model-based segmentation of 3-d neuroradiological data sets. IEEE Trans Med Imaging 18(10):828–839

    Google Scholar 

  23. Khan AR, Wang L, Beg MF (2008) FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using large deformation diffeomorphic metric mapping. NeuroImage 41(3):735–746

    Google Scholar 

  24. Khan AR, Chung MK, Beg MF (2009) Robust atlas-based brain segmentation using multi-structure confidence-weighted registration. In: Proceedings of the 12th international conference on medical image computing and computer-assisted intervention: part II, MICCAI ’09. Springer, pp 549–557

    Google Scholar 

  25. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration. NeuroImage 46(3):786–802

    Article  Google Scholar 

  26. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts. IEEE Trans Pattern Anal Mach Intell 26:65–81

    Google Scholar 

  27. Leventon ME, Grimson WEL, Faugeras O, III WMW (2000) Level set based segmentation with intensity and curvature priors. In: Proceedings of the IEEE workshop on mathematical methods in biomedical image analysis (MMBIA ’00), pp 4–12

    Google Scholar 

  28. Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T, Magnin IE (2002) A review of cardiac image registration methods. IEEE Trans Med Imaging 7(3):1011–1021

    Google Scholar 

  29. Moghaddam JM, Zadeh SH (2009) Automatic segmentation of brain structures using geometric moment invariants and artificial neural networks. In: Prince J, Pham D, Myers K (eds) Information processing in medical imaging, Lecture notes in computer science, vol 5636. Springer, Berlin, pp 326–337

    Google Scholar 

  30. MRIcro and MRIcron medical image viewer softwares.http://www.cabiatl.com/mricro/mricro/

  31. Murgasova M, Dyet L, Edwards D, Rutherford M, Hajnal J, Rueckert D (2007) Segmentation of brain MRI in young children. Acad Radiol 14(11):1350–1366

    Google Scholar 

  32. Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56(3):907–922

    Article  Google Scholar 

  33. Reiss A, Abrams M, Singer H, Ross J, Denckla M (1996) Brain development, gender and iq in children: a volumetric imaging study. Brain 119:1763–1774

    Google Scholar 

  34. Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4):1428–1442

    Article  Google Scholar 

  35. Soliva JC, Fauquet J, Bielsa A, Rovira M, Carmona S, Ramos-Quiroga JA, Hilferty J, Bulbena A, Casas M, Vilarroya O (2010) Quantitative mr analysis of caudate abnormalities in pediatric adhd: proposal for a diagnostic test. Psychiatry Research: Neuroimaging 182(3):238–243. doi:10.1016/j.pscychresns.2010.01.013

  36. Song Z, Tustison NJ, Avants BB, Gee JC (2006) Integrated graph cuts for brain mri segmentation. In: MICCAI (2), Lecture notes in computer science, vol 4191. Springer, pp 831–838

    Google Scholar 

  37. Statistical parametric mapping (spm). http://www.fil.ion.ucl.ac.uk/spm/

  38. Tohka J, Wallius E, Hirvonen J, Hietala J, Ruotsalainen U (2006) Automatic extraction of caudate and putamen in [\(^{11}\) C] raclopride pet using deformable surface models and normalized cuts. IEEE Trans Nucl Sci 53(1):220–227

    Google Scholar 

  39. Tremols V, Bielsa A, Soliva JC, Raheb C, Carmona S, Tomas J, Gispert JD, Rovira M, Fauquet J, Tobeña A, Bulbena A, Vilarroya O (2008) Differential abnormalities of the head and body of the caudate nucleus in attention deficit-hyperactivity disorder. Psychiatry Res 163(3):270–278

    Article  Google Scholar 

  40. van Ginneken B, Heimann T, Styner M (2007) 3d segmentation in the clinic: a grand challenge. In: MICCAI workshop on 3D segmentation in the clinic: a grand, challenge In: Heimann T, Styner M, van Ginneken B (eds)

    Google Scholar 

  41. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of mr images of the brain. IEEE Trans Med Imaging, 18(10):897–908

    Google Scholar 

  42. van Rikxoort E, Isgum I, Arzhaeva Y, Staring M, Klein S, Viergever M, Pluim J, van Ginneken B (2010) Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med Image Anal 14(1):39–49

    Google Scholar 

  43. Vese LA, Chan TF, Tony, Chan F (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50:271–293

    Google Scholar 

  44. Weickert J (1998) Anisotropic diffusion in image processing. ECMI Series, Teubner, stuttgart

    Google Scholar 

  45. Weldeselassie YT, Hamarneh G (2007) Dt-mri segmentation using graph cuts. In: Proceedings of the SPIE, San Diego

    Google Scholar 

  46. Xia Y, Bettinger K, Shen L, Reiss AL (2007) Automatic segmentation of the caudate nucleus from human brain mr images. IEEE Trans Med Imaging 26:509–517

    Google Scholar 

  47. Yushkevich PA, Piven J, Cody Hazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Igual .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Igual, L., Soliva, J.C., Hernández-Vela, A., Escalera, S., Vilarroya, O., Radeva, P. (2013). A Supervised Graph-Cut Deformable Model for Brain MRI Segmentation. In: González Hidalgo, M., Mir Torres, A., Varona Gómez, J. (eds) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5446-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5446-1_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5445-4

  • Online ISBN: 978-94-007-5446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics