Skip to main content

Proteins Encoded by the Human Papillomavirus Genome and Their Functions

  • Chapter
  • First Online:
HPV and Cancer

Abstract

The genome of all human papillomaviruses (HPVs) described to date encodes E1, E2, E4, L1, and L2 proteins, as well as some E5, E6, and E7 proteins. E1 and E2 are viral replication proteins that play several roles during productive infection, while E4 proteins are thought to aide in virion release. The L1 and L2 proteins work cooperatively to encapsidate the viral DNA into the virion. E5, E6 and E7 are viral oncoproteins that are associated with the increased proliferation of suprabasal epithelial cells. Herein we describe each of these proteins in further detail and discuss their role in the function of HPV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HPV:

Human Papillomavirus

LCR:

Long Control Region

RFC:

Replication Factor

DBD:

DNA Binding Domain

PCNA:

Proliferating Cell Nuclear Antigen

NLS:

Nuclear Localization Signal

NES:

Nuclear Export Sequence

pRb:

Retinoblastoma protein

HDACs:

Histone Deacetylases

HATs:

Histone Acetyl Transferases

ALT:

Alternative Lengthening of Telomere

PML:

Promyelocytic Leukemia

APBs:

ALT- associated PML Bodies

FANCD2:

Fanconi Anemia Group D2 protein

E6AP:

E6 Associated Protein

CBP:

CREB – binding protein

PDZ:

Post Drosophila Zonula

hSsib:

homolog of Drosophila Scribble protein

MAG:

Membrane Associate Guanylate

MAGUK:

MAG Kinase

USF:

Upstream Stimulatory Factor

NFX1-91:

X Box-Binding protein 1-91

PLK4:

Polo-Like Kinase 4

ATM-ATR:

Ataxia Telangiectasia – mutated – ATM

FA:

Fanconia Anemia

TNF- Alpha:

Tumor Necrosis Factor Alpha

TRAIL:

TNF related apoptosis- inducing ligand

TNFR 1:

TNF receptor 1

DISC:

Death-Inducing Signal Complex

FADD:

Fas – associated death domain

IAP2:

Inhibitor of Apoptosis Protein 2

ISGF3:

Interferon – Stimulated Gene Factor 3

ISRE:

Interferon – Stimulated Response Element

ISGs:

INF Stimulated Genes

STAT:

Signal Transducer and Activators of Transcription

JAK:

Tyrosine Kinases of the Janus family

IRF-1:

Interferon Regulatory Factor-1

MCP-1:

Monocyte Chemo-attractant Protein-1

eIF-2 alpha:

eukaryotic translation Initiation Factor 2 alpha

SRPK1:

Serine-arginine (SR) specific Kinase 1

EGFR:

Epidermal Growth Factor Receptor

MAP:

Mitogen- Activated Protein Kinase

ETA :

Endothelin receptor

ET-1:

Endothelin -1

COX-2:

Cyclooxygenase -2

VEGF:

Vascular Endothelial Growth Factor

PGE2 :

Prostaglandin E2

PI3K:

Phosphatidylinositol 3-Kinase

Fas L:

Fas Ligand

MHC I:

Major Histocompatibility Class I

VLPs:

Virus Like Particles

References

  • Yang, L.; Mohr, I.; Fouts, E.; Lim, D. A.; Nohaile, M.; Botchan, M. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A, 1993, 90(11), 5086–90.

    Article  CAS  PubMed  Google Scholar 

  • Stenlund, A. Initiation of DNA replication: lessons from viral initiator proteins. Nat Rev Mol Cell Biol, 2003, 4(10), 777–85.

    Article  CAS  PubMed  Google Scholar 

  • Ustav, E.; Ustav, M.; Szymanski, P.; Stenlund, A. The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. Proc Natl Acad Sci U S A, 1993, 90(3), 898–902.

    Article  CAS  PubMed  Google Scholar 

  • Mohr, I. J.; Clark, R.; Sun, S.; Androphy, E. J.; MacPherson, P.; Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science, 1990, 250(4988), 1694–9.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, E. P.; Pahel, G. L.; Rocque, W. J.; Barnes, J. A.; Lobe, D. C.; Hanlon, M. H.; Alexander, K. A.; Chao, S. F.; Lindley, K.; Phelps, W. C. The E1 helicase of human papillomavirus type 11 binds to the origin of replication with low sequence specificity. Virology, 2000, 270(2), 345–57.

    Article  CAS  PubMed  Google Scholar 

  • Frattini, M. G.; Laimins, L. A. Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. Proc Natl Acad Sci U S A, 1994, 91(26), 12398–402.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G.; Stenlund, A. Two patches of amino acids on the E2 DNA binding domain define the surface for interaction with E1. J Virol, 2000, 74(3), 1506–12.

    Article  CAS  PubMed  Google Scholar 

  • Sarafi, T. R.; McBride, A. A. Domains of the BPV-1 E1 replication protein required for origin-specific DNA binding and interaction with the E2 transactivator. Virology, 1995, 211(2), 385–96.

    Article  CAS  PubMed  Google Scholar 

  • Sedman, T.; Sedman, J.; Stenlund, A. Binding of the E1 and E2 proteins to the origin of replication of bovine papillomavirus. J Virol, 1997, 71(4), 2887–96.

    CAS  PubMed  Google Scholar 

  • Dell, G.; Wilkinson, K. W.; Tranter, R.; Parish, J.; Leo Brady, R.; Gaston, K. Comparison of the structure and DNA-binding properties of the E2 proteins from an oncogenic and a non-oncogenic human papillomavirus. J Mol Biol, 2003, 334(5), 979–91.

    Article  CAS  PubMed  Google Scholar 

  • Sim, J.; Ozgur, S.; Lin, B. Y.; Yu, J. H.; Broker, T. R.; Chow, L. T.; Griffith, J. Remodeling of the human papillomavirus type 11 replication origin into discrete nucleoprotein particles and looped structures by the E2 protein. J Mol Biol, 2008, 375(4), 1165–77.

    Article  CAS  PubMed  Google Scholar 

  • Chow, L. T.; Broker, T. R.; Steinberg, B. M. The natural history of human papillomavirus infections of the mucosal epithelia. APMIS, 2010, 118(6–7), 422–49.

    Google Scholar 

  • Loo, Y. M.; Melendy, T. Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. J Virol, 2004, 78(4), 1605–15.

    Article  CAS  PubMed  Google Scholar 

  • Conger, K. L.; Liu, J. S.; Kuo, S. R.; Chow, L. T.; Wang, T. S. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem, 1999, 274(5), 2696–705.

    Article  CAS  PubMed  Google Scholar 

  • Clower, R. V.; Fisk, J. C.; Melendy, T. Papillomavirus E1 protein binds to and stimulates human topoisomerase I. J Virol, 2006, 80(3), 1584–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, S. R.; Liu, J. S.; Broker, T. R.; Chow, L. T. Cell-free replication of the human papillomavirus DNA with homologous viral E1 and E2 proteins and human cell extracts. J Biol Chem, 1994, 269(39), 24058–65.

    CAS  PubMed  Google Scholar 

  • Chen, G.; Stenlund, A. Sequential and ordered assembly of E1 initiator complexes on the papillomavirus origin of DNA replication generates progressive structural changes related to melting. Mol Cell Biol, 2002, 22(21), 7712–20.

    Article  CAS  PubMed  Google Scholar 

  • Enemark, E. J.; Stenlund, A.; Joshua-Tor, L. Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. Embo J, 2002, 21(6), 1487–96.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, C. M.; Stenlund, A. Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. Embo J, 1998, 17(23), 7044–55.

    Article  CAS  PubMed  Google Scholar 

  • Lin, B. Y.; Makhov, A. M.; Griffith, J. D.; Broker, T. R.; Chow, L. T. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol, 2002, 22(18), 6592–604.

    Article  CAS  PubMed  Google Scholar 

  • Stenlund, A. E1 initiator DNA binding specificity is unmasked by selective inhibition of non-specific DNA binding. EMBO J, 2003, 22(4), 954–63.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.; Schuck, S.; Stenlund, A. Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity. Mol Cell, 2007, 25(6), 825–37.

    Article  CAS  PubMed  Google Scholar 

  • Deng, W.; Lin, B. Y.; Jin, G.; Wheeler, C. G.; Ma, T.; Harper, J. W.; Broker, T. R.; Chow, L. T. Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase. J Virol, 2004, 78(24), 13954–65.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, C. Y.; Mechali, F.; Bonne-Andrea, C. Nucleocytoplasmic shuttling of bovine papillomavirus E1 helicase downregulates viral DNA replication in S phase. J Virol, 2007, 81(1), 384–94.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T.; Zou, N.; Lin, B. Y.; Chow, L. T.; Harper, J. W. Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc Natl Acad Sci U S A, 1999, 96(2), 382–7.

    Article  CAS  PubMed  Google Scholar 

  • Lentz, M. R.; Stevens, S. M., Jr.; Raynes, J.; Elkhoury, N. A phosphorylation map of the bovine papillomavirus E1 helicase. Virol J, 2006, 3, 13.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G.; Wilson, V. G. Identification of a nuclear export signal sequence for bovine papillomavirus E1 protein. Virology, 2008, 373(1), 149–62.

    Article  CAS  PubMed  Google Scholar 

  • Moody, C. A.; Fradet-Turcotte, A.; Archambault, J.; Laimins, L. A. Human papillomaviruses activate caspases upon epithelial differentiation to induce viral genome amplification. Proc Natl Acad Sci U S A, 2007, 104(49), 19541–6.

    Article  CAS  PubMed  Google Scholar 

  • You, J.; Croyle, J. L.; Nishimura, A.; Ozato, K.; Howley, P. M. Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell, 2004, 117(3), 349–60.

    Article  CAS  PubMed  Google Scholar 

  • Steger, G.; Corbach, S. Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J Virol, 1997, 71(1), 50–8.

    CAS  PubMed  Google Scholar 

  • Bouvard, V.; Storey, A.; Pim, D.; Banks, L. Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J, 1994, 13(22), 5451–9.

    CAS  PubMed  Google Scholar 

  • Longworth, M. S.; Laimins, L. A. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev, 2004, 68(2), 362–72.

    Article  CAS  PubMed  Google Scholar 

  • Stubenrauch, F.; Lim, H. B.; Laimins, L. A. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J Virol, 1998, 72(2), 1071–7.

    CAS  PubMed  Google Scholar 

  • Frattini, M. G.; Lim, H. B.; Laimins, L. A. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc Natl Acad Sci U S A, 1996, 93(7), 3062–7.

    Article  CAS  PubMed  Google Scholar 

  • Munger, K.; Baldwin, A.; Edwards, K. M.; Hayakawa, H.; Nguyen, C. L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol, 2004, 78(21), 11451–60.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, I.; Nickerson, J.; Penman, S.; Stanley, M. Human papillomavirus 16 E7 protein is associated with the nuclear matrix. Proc Natl Acad Sci U S A, 1991, 88(24), 11217–21.

    Article  CAS  PubMed  Google Scholar 

  • Smith-McCune, K.; Kalman, D.; Robbins, C.; Shivakumar, S.; Yuschenkoff, L.; Bishop, J. M. Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. Proc Natl Acad Sci U S A, 1999, 96(12), 6999–7004.

    Article  CAS  PubMed  Google Scholar 

  • Huh, K. W.; DeMasi, J.; Ogawa, H.; Nakatani, Y.; Howley, P. M.; Munger, K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A, 2005, 102(32), 11492–7.

    Article  CAS  PubMed  Google Scholar 

  • Smotkin, D.; Wettstein, F. O. The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein. J Virol, 1987, 61(5), 1686–9.

    CAS  PubMed  Google Scholar 

  • Nguyen, C. L.; Eichwald, C.; Nibert, M. L.; Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. J Virol, 2007, 81(24), 13533–43.

    Article  CAS  PubMed  Google Scholar 

  • Dreier, K.; Scheiden, R.; Lener, B.; Ehehalt, D.; Pircher, H.; Muller-Holzner, E.; Rostek, U.; Kaiser, A.; Fiedler, M.; Ressler, S.; Lechner, S.; Widschwendter, A.; Even, J.; Capesius, C.; Jansen-Durr, P.; Zwerschke, W. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ. Virology, 2011, 409(1), 54–68.

    Google Scholar 

  • Knapp, A. A.; McManus, P. M.; Bockstall, K.; Moroianu, J. Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein. Virology, 2009, 383(1), 60–8.

    Article  CAS  PubMed  Google Scholar 

  • Munger, K.; Phelps, W. C.; Bubb, V.; Howley, P. M.; Schlegel, R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol, 1989, 63(10), 4417–21.

    CAS  PubMed  Google Scholar 

  • Hawley-Nelson, P.; Vousden, K. H.; Hubbert, N. L.; Lowy, D. R.; Schiller, J. T. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J, 1989, 8(12), 3905–10.

    CAS  PubMed  Google Scholar 

  • Bedell, M. A.; Jones, K. H.; Grossman, S. R.; Laimins, L. A. Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J Virol, 1989, 63(3), 1247–55.

    CAS  PubMed  Google Scholar 

  • Hudson, J. B.; Bedell, M. A.; McCance, D. J.; Laiminis, L. A. Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol, 1990, 64(2), 519–26.

    CAS  PubMed  Google Scholar 

  • Phelps, W. C.; Yee, C. L.; Munger, K.; Howley, P. M. The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A. Cell, 1988, 53(4), 539–47.

    Article  CAS  PubMed  Google Scholar 

  • Phelps, W. C.; Munger, K.; Yee, C. L.; Barnes, J. A.; Howley, P. M. Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol, 1992, 66(4), 2418–27.

    CAS  PubMed  Google Scholar 

  • Huibregtse, J. M.; Scheffner, M.; Howley, P. M. E6-AP directs the HPV E6-dependent inactivation of p53 and is representative of a family of structurally and functionally related proteins. Cold Spring Harb Symp Quant Biol, 1994, 59, 237–45.

    Article  CAS  PubMed  Google Scholar 

  • Dyson, N.; Howley, P. M.; Munger, K.; Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 1989, 243(4893), 934–7.

    Article  CAS  PubMed  Google Scholar 

  • Munger, K.; Werness, B. A.; Dyson, N.; Phelps, W. C.; Harlow, E.; Howley, P. M. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. Embo J, 1989, 8(13), 4099–105.

    CAS  PubMed  Google Scholar 

  • Munger, K.; Basile, J. R.; Duensing, S.; Eichten, A.; Gonzalez, S. L.; Grace, M.; Zacny, V. L. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene, 2001, 20(54), 7888–98.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, S. N.; Wazer, D. E.; Band, V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res, 1996, 56(20), 4620–4.

    CAS  PubMed  Google Scholar 

  • Huh, K.; Zhou, X.; Hayakawa, H.; Cho, J. Y.; Libermann, T. A.; Jin, J.; Harper, J. W.; Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol, 2007, 81(18), 9737–47.

    Article  CAS  PubMed  Google Scholar 

  • Chellappan, S.; Kraus, V. B.; Kroger, B.; Munger, K.; Howley, P. M.; Phelps, W. C.; Nevins, J. R. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci U S A, 1992, 89(10), 4549–53.

    Article  CAS  PubMed  Google Scholar 

  • Imai, Y.; Matsushima, Y.; Sugimura, T.; Terada, M. Purification and characterization of human papillomavirus type 16 E7 protein with preferential binding capacity to the underphosphorylated form of retinoblastoma gene product. J Virol, 1991, 65(9), 4966–72.

    CAS  PubMed  Google Scholar 

  • Dyson, N.; Guida, P.; Munger, K.; Harlow, E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol, 1992, 66(12), 6893–902.

    CAS  PubMed  Google Scholar 

  • Cheng, S.; Schmidt-Grimminger, D. C.; Murant, T.; Broker, T. R.; Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 1995, 9(19), 2335–49.

    Article  CAS  PubMed  Google Scholar 

  • Gage, J. R.; Meyers, C.; Wettstein, F. O. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J Virol, 1990, 64(2), 723–30.

    CAS  PubMed  Google Scholar 

  • Heck, D. V.; Yee, C. L.; Howley, P. M.; Munger, K. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci U S A, 1992, 89(10), 4442–6.

    Article  CAS  PubMed  Google Scholar 

  • Sang, B. C.; Barbosa, M. S. Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoproteins. Proc Natl Acad Sci U S A, 1992, 89(17), 8063–7.

    Article  CAS  PubMed  Google Scholar 

  • Lyons, T. E.; Salih, M.; Tuana, B. S. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol, 2006, 290(1), C189–99.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin-Drubin, M. E.; Huh, K. W.; Munger, K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol, 2008, 82(17), 8695–705.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin-Drubin, M. E.; Munger, K. The human papillomavirus E7 oncoprotein. Virology, 2009, 384(2), 335–44.

    Article  CAS  PubMed  Google Scholar 

  • Brehm, A.; Nielsen, S. J.; Miska, E. A.; McCance, D. J.; Reid, J. L.; Bannister, A. J.; Kouzarides, T. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J, 1999, 18(9), 2449–58.

    Article  CAS  PubMed  Google Scholar 

  • Longworth, M. S.; Wilson, R.; Laimins, L. A. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J, 2005, 24(10), 1821–30.

    Article  CAS  PubMed  Google Scholar 

  • Avvakumov, N.; Torchia, J.; Mymryk, J. S. Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene, 2003, 22(25), 3833–41.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, A.; Huh, K. W.; Munger, K. Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J Virol, 2006, 80(13), 6669–77.

    Article  CAS  PubMed  Google Scholar 

  • Bernat, A.; Avvakumov, N.; Mymryk, J. S.; Banks, L. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene, 2003, 22(39), 7871–81.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S. M.; McCance, D. J. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol, 2002, 76(17), 8710–21.

    Article  CAS  PubMed  Google Scholar 

  • Pim, D.; Banks, L. Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses. APMIS, 2010, 118(6–7), 471–93.

    Google Scholar 

  • Missero, C.; Calautti, E.; Eckner, R.; Chin, J.; Tsai, L. H.; Livingston, D. M.; Dotto, G. P. Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci U S A, 1995, 92(12), 5451–5.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, L. A.; Chen, Y.; Fischer, S. M.; Conti, C. J. Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation. Oncogene, 1999, 18(2), 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Deshpande, A.; Sicinski, P.; Hinds, P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene, 2005, 24(17), 2909–15.

    Article  CAS  PubMed  Google Scholar 

  • Funk, J. O.; Waga, S.; Harry, J. B.; Espling, E.; Stillman, B.; Galloway, D. A. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev, 1997, 11(16), 2090–100.

    Article  CAS  PubMed  Google Scholar 

  • Zerfass-Thome, K.; Zwerschke, W.; Mannhardt, B.; Tindle, R.; Botz, J. W.; Jansen-Durr, P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene, 1996, 13(11), 2323–30.

    CAS  PubMed  Google Scholar 

  • Nguyen, C. L.; Munger, K. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology, 2008, 380(1), 21–5.

    Article  CAS  PubMed  Google Scholar 

  • He, W.; Staples, D.; Smith, C.; Fisher, C. Direct activation of cyclin-dependent kinase 2 by human papillomavirus E7. J Virol, 2003, 77(19), 10566–74.

    Article  CAS  PubMed  Google Scholar 

  • Tommasino, M.; Adamczewski, J. P.; Carlotti, F.; Barth, C. F.; Manetti, R.; Contorni, M.; Cavalieri, F.; Hunt, T.; Crawford, L. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene, 1993, 8(1), 195–202.

    CAS  PubMed  Google Scholar 

  • Spardy, N.; Duensing, A.; Hoskins, E. E.; Wells, S. I.; Duensing, S. HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res, 2008, 68(23), 9954–63.

    Article  CAS  PubMed  Google Scholar 

  • Stoppler, H.; Hartmann, D. P.; Sherman, L.; Schlegel, R. The human papillomavirus type 16 E6 and E7 oncoproteins dissociate cellular telomerase activity from the maintenance of telomere length. J Biol Chem, 1997, 272(20), 13332–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Z. H.; Jiang, W. Q.; Cesare, A. J.; Neumann, A. A.; Wadhwa, R.; Reddel, R. R. Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres. J Biol Chem, 2007, 282(40), 29314–22.

    Article  CAS  PubMed  Google Scholar 

  • Yeager, T. R.; Neumann, A. A.; Englezou, A.; Huschtscha, L. I.; Noble, J. R.; Reddel, R. R. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res, 1999, 59(17), 4175–9.

    CAS  PubMed  Google Scholar 

  • D’Andrea, A. D. The Fanconi road to cancer. Genes Dev, 2003, 17(16), 1933–6.

    Article  PubMed  CAS  Google Scholar 

  • Moody, C. A.; Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 2010,10(8), 550–60.

    Google Scholar 

  • Huibregtse, J. M.; Scheffner, M.; Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J, 1991, 10(13), 4129–35.

    CAS  PubMed  Google Scholar 

  • Schwarz, S. E.; Rosa, J. L.; Scheffner, M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J Biol Chem, 1998, 273(20), 12148–54.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner, M.; Huibregtse, J. M.; Vierstra, R. D.; Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75(3), 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner, M.; Werness, B. A.; Huibregtse, J. M.; Levine, A. J.; Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 1990, 63(6), 1129–36.

    Article  CAS  PubMed  Google Scholar 

  • Lechner, M. S.; Laimins, L. A. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol, 1994, 68(7), 4262–73.

    CAS  PubMed  Google Scholar 

  • Patel, D.; Huang, S. M.; Baglia, L. A.; McCance, D. J. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J, 1999, 18(18), 5061–72.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, H.; Degenkolbe, R.; Bernard, H. U.; O’Connor, M. J. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol, 1999, 73(8), 6209–19.

    CAS  PubMed  Google Scholar 

  • Kumar, A.; Zhao, Y.; Meng, G.; Zeng, M.; Srinivasan, S.; Delmolino, L. M.; Gao, Q.; Dimri, G.; Weber, G. F.; Wazer, D. E.; Band, H.; Band, V. Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol Cell Biol, 2002, 22(16), 5801–12.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M.; Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene, 1998, 17(23), 2943–54.

    Article  CAS  PubMed  Google Scholar 

  • Howie, H. L.; Katzenellenbogen, R. A.; Galloway, D. A. Papillomavirus E6 proteins. Virology, 2009, 384(2), 324–34.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M.; Narayan, N.; Pim, D.; Tomaic, V.; Massimi, P.; Nagasaka, K.; Kranjec, C.; Gammoh, N.; Banks, L. Human papillomaviruses, cervical cancer and cell polarity. Oncogene, 2008, 27(55), 7018–30.

    Article  CAS  PubMed  Google Scholar 

  • Kiyono, T.; Hiraiwa, A.; Fujita, M.; Hayashi, Y.; Akiyama, T.; Ishibashi, M. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A, 1997, 94(21), 11612–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. S.; Weiss, R. S.; Javier, R. T. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A, 1997, 94(13), 6670–5.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, S.; Huibregtse, J. M. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol, 2000, 20(21), 8244–53.

    Article  CAS  PubMed  Google Scholar 

  • Glaunsinger, B. A.; Lee, S. S.; Thomas, M.; Banks, L.; Javier, R. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene, 2000, 19(46), 5270–80.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M.; Glaunsinger, B.; Pim, D.; Javier, R.; Banks, L. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene, 2001, 20(39), 5431–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. S.; Glaunsinger, B.; Mantovani, F.; Banks, L.; Javier, R. T. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol, 2000, 74(20), 9680–93.

    Article  CAS  PubMed  Google Scholar 

  • Spanos, W. C.; Hoover, A.; Harris, G. F.; Wu, S.; Strand, G. L.; Anderson, M. E.; Klingelhutz, A. J.; Hendriks, W.; Bossler, A. D.; Lee, J. H. The PDZ binding motif of human papillomavirus type 16 E6 induces PTPN13 loss, which allows anchorage-independent growth and synergizes with ras for invasive growth. J Virol, 2008, 82(5), 2493–500.

    Article  CAS  PubMed  Google Scholar 

  • Humbert, P.; Russell, S.; Richardson, H. Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays, 2003, 25(6), 542–53.

    Article  CAS  PubMed  Google Scholar 

  • Funke, L.; Dakoji, S.; Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 2005, 74, 219–45.

    Article  CAS  PubMed  Google Scholar 

  • Jing, M.; Bohl, J.; Brimer, N.; Kinter, M.; Vande Pol, S. B. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol, 2007, 81(5), 2231–9.

    Article  CAS  PubMed  Google Scholar 

  • Topffer, S.; Muller-Schiffmann, A.; Matentzoglu, K.; Scheffner, M.; Steger, G. Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol, 2007, 88(Pt 11), 2956–65.

    Article  PubMed  CAS  Google Scholar 

  • Hoover, A. C.; Strand, G. L.; Nowicki, P. N.; Anderson, M. E.; Vermeer, P. D.; Klingelhutz, A. J.; Bossler, A. D.; Pottala, J. V.; Hendriks, W. J.; Lee, J. H. Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway. Oncogene, 2009, 28(45), 3960–70.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, M. L.; Nguyen, M. M.; Lee, D.; Griep, A. E.; Lambert, P. F. The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol, 2003, 77(12), 6957–64.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, M. M.; Nguyen, M. L.; Caruana, G.; Bernstein, A.; Lambert, P. F.; Griep, A. E. Requirement of PDZ-containing proteins for cell cycle regulation and differentiation in the mouse lens epithelium. Mol Cell Biol, 2003, 23(24), 8970–81.

    Article  CAS  PubMed  Google Scholar 

  • Gewin, L.; Myers, H.; Kiyono, T.; Galloway, D. A. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev, 2004, 18(18), 2269–82.

    Article  CAS  PubMed  Google Scholar 

  • Klingelhutz, A. J.; Foster, S. A.; McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 1996, 380(6569), 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S. T.; Kyo, S.; Laimins, L. A. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol, 2001, 75(12), 5559–66.

    Article  CAS  PubMed  Google Scholar 

  • Veldman, T.; Liu, X.; Yuan, H.; Schlegel, R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A, 2003, 100(14), 8211–6.

    Article  CAS  PubMed  Google Scholar 

  • McMurray, H. R.; McCance, D. J. Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol, 2003, 77(18), 9852–61.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M.; Luo, W.; Elzi, D. J.; Grandori, C.; Galloway, D. A. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol, 2008, 28(15), 4819–28.

    Article  CAS  PubMed  Google Scholar 

  • James, M. A.; Lee, J. H.; Klingelhutz, A. J. HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer, 2006, 119(8), 1878–85.

    Article  CAS  PubMed  Google Scholar 

  • White, A. E.; Livanos, E. M.; Tlsty, T. D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev, 1994, 8(6), 666–77.

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen, H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol, 1999, 9(6), 405–11.

    Article  CAS  PubMed  Google Scholar 

  • Duensing, S.; Duensing, A.; Crum, C. P.; Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res, 2001, 61(6), 2356–60.

    CAS  PubMed  Google Scholar 

  • zur Hausen, H. Viruses in human cancers. Science, 1991, 254(5035), 1167–73.

    Article  CAS  PubMed  Google Scholar 

  • Bibbo, M.; Dytch, H. E.; Alenghat, E.; Bartels, P. H.; Wied, G. L. DNA ploidy profiles as prognostic indicators in CIN lesions. Am J Clin Pathol, 1989, 92(3), 261–5.

    CAS  PubMed  Google Scholar 

  • Steinbeck, R. G. Proliferation and DNA aneuploidy in mild dysplasia imply early steps of cervical carcinogenesis. Acta Oncol, 1997, 36(1), 3–12.

    Article  CAS  PubMed  Google Scholar 

  • Rihet, S.; Lorenzato, M.; Clavel, C. Oncogenic human papillomaviruses and ploidy in cervical lesions. J Clin Pathol, 1996, 49(11), 892–6.

    Article  CAS  PubMed  Google Scholar 

  • Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer, 2007, 7(12), 911–24.

    Article  CAS  PubMed  Google Scholar 

  • Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer, 2002, 2(11), 815–25.

    Article  CAS  PubMed  Google Scholar 

  • D’Assoro, A. B.; Lingle, W. L.; Salisbury, J. L. Centrosome amplification and the development of cancer. Oncogene, 2002, 21(40), 6146–53.

    Article  PubMed  CAS  Google Scholar 

  • Lingle, W. L.; Barrett, S. L.; Negron, V. C.; D’Assoro, A. B.; Boeneman, K.; Liu, W.; Whitehead, C. M.; Reynolds, C.; Salisbury, J. L. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci U S A, 2002, 99(4), 1978–83.

    Article  CAS  PubMed  Google Scholar 

  • Duensing, A.; Liu, Y.; Perdreau, S. A.; Kleylein-Sohn, J.; Nigg, E. A.; Duensing, S. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene, 2007, 26(43), 6280–8.

    Article  CAS  PubMed  Google Scholar 

  • Duensing, S.; Lee, L. Y.; Duensing, A.; Basile, J.; Piboonniyom, S.; Gonzalez, S.; Crum, C. P.; Munger, K. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A, 2000, 97(18), 1–7.

    Article  Google Scholar 

  • Duensing, A.; Spardy, N.; Chatterjee, P.; Zheng, L.; Parry, J.; Cuevas, R.; Korzeniewski, N.; Duensing, S. Centrosome overduplication, chromosomal instability, and human papillomavirus oncoproteins. Environ Mol Mutagen, 2009, 50(8), 741–7.

    Article  CAS  PubMed  Google Scholar 

  • Korzeniewski, N.; Zheng, L.; Cuevas, R.; Parry, J.; Chatterjee, P.; Anderton, B.; Duensing, A.; Munger, K.; Duensing, S. Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res, 2009, 69(16), 6668–75.

    Article  CAS  PubMed  Google Scholar 

  • Martin, L. G.; Demers, G. W.; Galloway, D. A. Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J Virol, 1998, 72(2), 975–85.

    CAS  PubMed  Google Scholar 

  • Habedanck, R.; Stierhof, Y. D.; Wilkinson, C. J.; Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol, 2005, 7(11), 1140–6.

    Article  CAS  PubMed  Google Scholar 

  • Patel, D.; Incassati, A.; Wang, N.; McCance, D. J. Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res, 2004, 64(4), 1299–306.

    Article  CAS  PubMed  Google Scholar 

  • Finzer, P.; Aguilar-Lemarroy, A.; Rosl, F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett, 2002, 188(1–2), 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Duensing, A.; Chin, A.; Wang, L.; Kuan, S. F.; Duensing, S. Analysis of centrosome overduplication in correlation to cell division errors in high-risk human papillomavirus (HPV)-associated anal neoplasms. Virology, 2008, 372(1), 157–64.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. T.; Laimins, L. A. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J Virol, 1998, 72(2), 1131–7.

    CAS  PubMed  Google Scholar 

  • Thompson, D. A.; Belinsky, G.; Chang, T. H.; Jones, D. L.; Schlegel, R.; Munger, K. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene, 1997, 15(25), 3025–35.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, S. A.; Nordberg, J. J.; Liu, Y.; Sluder, G.; Chen, J. J. Abrogation of the postmitotic checkpoint contributes to polyploidization in human papillomavirus E7-expressing cells. J Virol, 2009, 83(6), 2756–64.

    Article  CAS  PubMed  Google Scholar 

  • Olaharski, A. J.; Sotelo, R.; Solorza-Luna, G.; Gonsebatt, M. E.; Guzman, P.; Mohar, A.; Eastmond, D. A. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis, 2006, 27(2), 337–43.

    Article  CAS  PubMed  Google Scholar 

  • Moody, C. A.; Laimins, L. A. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog, 2009, 5(10), e1000605.

    Article  PubMed  CAS  Google Scholar 

  • Spardy, N.; Covella, K.; Cha, E.; Hoskins, E. E.; Wells, S. I.; Duensing, A.; Duensing, S. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res, 2009, 69(17), 7022–9.

    Article  CAS  PubMed  Google Scholar 

  • Bartek, J.; Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol, 2007, 19(2), 238–45.

    Article  CAS  PubMed  Google Scholar 

  • Spardy, N.; Duensing, A.; Charles, D.; Haines, N.; Nakahara, T.; Lambert, P. F.; Duensing, S. The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol, 2007, 81(23), 13265–70.

    Article  CAS  PubMed  Google Scholar 

  • Howlett, N. G.; Taniguchi, T.; Durkin, S. G.; D’Andrea, A. D.; Glover, T. W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet, 2005, 14(5), 693–701.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, L. H. Unraveling the Fanconi anemia-DNA repair connection. Nat Genet, 2005, 37(9), 921–2.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, K.; Yang, Y. G.; Pierce, A. J.; Taniguchi, T.; Digweed, M.; D’Andrea, A. D.; Wang, Z. Q.; Jasin, M. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci U S A, 2005, 102(4), 1110–5.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, S.; Sauder, D. N. Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur J Immunol, 1997, 27(7), 1713–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, S. Apoptosis by death factor. Cell, 1997, 88(3), 355–65.

    Article  CAS  PubMed  Google Scholar 

  • Wallach, D.; Varfolomeev, E. E.; Malinin, N. L.; Goltsev, Y. V.; Kovalenko, A. V.; Boldin, M. P. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol, 1999, 17, 331–67.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. G.; Hsu, H.; Goeddel, D. V.; Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell, 1996, 87(3), 565–76.

    Article  CAS  PubMed  Google Scholar 

  • Basile, J. R.; Zacny, V.; Munger, K. The cytokines tumor necrosis factor-alpha (TNF-alpha ) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J Biol Chem, 2001, 276(25), 22522–8.

    Article  CAS  PubMed  Google Scholar 

  • Filippova, M.; Song, H.; Connolly, J. L.; Dermody, T. S.; Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem, 2002, 277(24), 21730–9.

    Article  CAS  PubMed  Google Scholar 

  • Filippova, M.; Parkhurst, L.; Duerksen-Hughes, P. J. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem, 2004, 279(24), 25729–44.

    Article  CAS  PubMed  Google Scholar 

  • Tungteakkhun, S. S.; Filippova, M.; Neidigh, J. W.; Fodor, N.; Duerksen-Hughes, P. J. The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J Virol, 2008, 82(19), 9600–14.

    Article  CAS  PubMed  Google Scholar 

  • Garnett, T. O.; Filippova, M.; Duerksen-Hughes, P. J. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ, 2006, 13(11), 1915–26.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, M.; Butz, K.; Dymalla, S.; Semzow, J.; Hoppe-Seyler, F. Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene, 2006, 25(29), 4009–15.

    Article  CAS  PubMed  Google Scholar 

  • James, M. A.; Lee, J. H.; Klingelhutz, A. J. Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol, 2006, 80(11), 5301–7.

    Article  CAS  PubMed  Google Scholar 

  • Borbely, A. A.; Murvai, M.; Konya, J.; Beck, Z.; Gergely, L.; Li, F.; Veress, G. Effects of human papillomavirus type 16 oncoproteins on survivin gene expression. J Gen Virol, 2006, 87(Pt 2), 287–94.

    Article  CAS  PubMed  Google Scholar 

  • Stark, G. R.; Kerr, I. M.; Williams, B. R.; Silverman, R. H.; Schreiber, R. D. How cells respond to interferons. Annu Rev Biochem, 1998, 67, 227–64.

    Article  CAS  PubMed  Google Scholar 

  • Bluyssen, A. R.; Durbin, J. E.; Levy, D. E. ISGF3 gamma p48, a specificity switch for interferon activated transcription factors. Cytokine Growth Factor Rev, 1996, 7(1), 11–7.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini, S.; Dusanter-Fourt, I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur J Biochem, 1997, 248(3), 615–33.

    Article  CAS  PubMed  Google Scholar 

  • Barnard, P.; McMillan, N. A. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology, 1999, 259(2), 305–13.

    Article  CAS  PubMed  Google Scholar 

  • Barnard, P.; Payne, E.; McMillan, N. A. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology, 2000, 277(2), 411–9.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. S.; Kim, E. J.; Kwon, H. J.; Hwang, E. S.; Namkoong, S. E.; Um, S. J. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem, 2000, 275(10), 6764–9

    Article  CAS  PubMed  Google Scholar 

  • Um, S. J.; Rhyu, J. W.; Kim, E. J.; Jeon, K. C.; Hwang, E. S.; Park, J. S. Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo. Cancer Lett, 2002, 179(2), 205–12.

    Article  CAS  PubMed  Google Scholar 

  • Ronco, L. V.; Karpova, A. Y.; Vidal, M.; Howley, P. M. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev, 1998, 12(13), 2061–72.

    Article  CAS  PubMed  Google Scholar 

  • Li, S.; Labrecque, S.; Gauzzi, M. C.; Cuddihy, A. R.; Wong, A. H.; Pellegrini, S.; Matlashewski, G. J.; Koromilas, A. E. The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene, 1999, 18(42), 5727–37.

    Article  CAS  PubMed  Google Scholar 

  • Hebner, C. M.; Wilson, R.; Rader, J.; Bidder, M.; Laimins, L. A. Human papillomaviruses target the double-stranded RNA protein kinase pathway. J Gen Virol, 2006, 87(Pt 11), 3183–93.

    Article  CAS  PubMed  Google Scholar 

  • Hershey, J. W. Translational control in mammalian cells. Annu Rev Biochem, 1991, 60, 717–55.

    Article  CAS  PubMed  Google Scholar 

  • Kazemi, S.; Papadopoulou, S.; Li, S.; Su, Q.; Wang, S.; Yoshimura, A.; Matlashewski, G.; Dever, T. E.; Koromilas, A. E. Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 alpha) phosphorylation by the human papillomavirus type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol, 2004, 24(8), 3415–29.

    Article  CAS  PubMed  Google Scholar 

  • Hebner, C.; Beglin, M.; Laimins, L. A. Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J Virol, 2007, 81(23), 12740–7.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar, J.; Campbell, D.; Grand, R. J.; Gallimore, P. H. Identification of the human papilloma virus-1a E4 gene products. EMBO J, 1986, 5(2), 355–62.

    CAS  PubMed  Google Scholar 

  • Nasseri, M.; Hirochika, R.; Broker, T. R.; Chow, L. T. A human papilloma virus type 11 transcript encoding an E1-E4 protein. Virology, 1987, 159(2), 433–9.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, S.; Ashmole, I.; Rookes, S. M.; Gallimore, P. H. Mutational analysis of the human papillomavirus type 16 E1-E4 protein shows that the C terminus is dispensable for keratin cytoskeleton association but is involved in inducing disruption of the keratin filaments. J Virol, 1997, 71(5), 3554–62.

    CAS  PubMed  Google Scholar 

  • Roberts, S.; Ashmole, I.; Gibson, L. J.; Rookes, S. M.; Barton, G. J.; Gallimore, P. H. Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol, 1994, 68(10), 6432–45.

    CAS  PubMed  Google Scholar 

  • Bryan, J. T.; Han, A.; Fife, K. H.; Brown, D. R. The human papillomavirus type 11 E1E4 protein is phosphorylated in genital epithelium. Virology, 2000, 268(2), 430–9.

    Article  CAS  PubMed  Google Scholar 

  • Grand, R. J.; Doorbar, J.; Smith, K. J.; Coneron, I.; Gallimore, P. H. Phosphorylation of the human papillomavirus type 1 E4 proteins in vivo and in vitro. Virology, 1989, 170(1), 201–13.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar, J.; Coneron, I.; Gallimore, P. H. Sequence divergence yet conserved physical characteristics among the E4 proteins of cutaneous human papillomaviruses. Virology, 1989, 172(1), 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar, J.; Evans, H. S.; Coneron, I.; Crawford, L. V.; Gallimore, P. H. Analysis of HPV-1 E4 gene expression using epitope-defined antibodies. Embo J, 1988, 7(3), 825–33.

    CAS  PubMed  Google Scholar 

  • Peh, W. L.; Middleton, K.; Christensen, N.; Nicholls, P.; Egawa, K.; Sotlar, K.; Brandsma, J.; Percival, A.; Lewis, J.; Liu, W. J.; Doorbar, J. Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol, 2002, 76(20), 10401–16.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar, J.; Ely, S.; Sterling, J.; McLean, C.; Crawford, L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature, 1991, 352(6338), 824–7.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, S.; Ashmole, I.; Johnson, G. D.; Kreider, J. W.; Gallimore, P. H. Cutaneous and mucosal human papillomavirus E4 proteins form intermediate filament-like structures in epithelial cells. Virology, 1993, 197(1), 176–87.

    Article  CAS  PubMed  Google Scholar 

  • Brown, D. R.; Bryan, J. T. Abnormalities of cornified cell envelopes isolated from human papillomavirus type 11-infected genital epithelium. Virology, 2000, 271(1), 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, J. T.; Brown, D. R. Association of the human papillomavirus type 11 E1()E4 protein with cornified cell envelopes derived from infected genital epithelium. Virology, 2000, 277(2), 262–9.

    Article  CAS  PubMed  Google Scholar 

  • Raj, K.; Berguerand, S.; Southern, S.; Doorbar, J.; Beard, P. E1 empty set E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol, 2004, 78(13), 7199–207.

    Article  CAS  PubMed  Google Scholar 

  • Knight, G. L.; Grainger, J. R.; Gallimore, P. H.; Roberts, S. Cooperation between different forms of the human papillomavirus type 1 E4 protein to block cell cycle progression and cellular DNA synthesis. J Virol, 2004, 78(24), 13920–33.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, S.; Kingsbury, S. R.; Stoeber, K.; Knight, G. L.; Gallimore, P. H.; Williams, G. H. Identification of an arginine-rich motif in human papillomavirus type 1 E1;E4 protein necessary for E4-mediated inhibition of cellular DNA synthesis in vitro and in cells. J Virol, 2008, 82(18), 9056–64.

    Article  CAS  PubMed  Google Scholar 

  • Davy, C. E.; Jackson, D. J.; Wang, Q.; Raj, K.; Masterson, P. J.; Fenner, N. F.; Southern, S.; Cuthill, S.; Millar, J. B.; Doorbar, J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J Virol, 2002, 76(19), 9806–18.

    Article  CAS  PubMed  Google Scholar 

  • Nakahara, T.; Nishimura, A.; Tanaka, M.; Ueno, T.; Ishimoto, A.; Sakai, H. Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol, 2002, 76(21), 10914–20.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, S.; Hillman, M. L.; Knight, G. L.; Gallimore, P. H. The ND10 component promyelocytic leukemia protein relocates to human papillomavirus type 1 E4 intranuclear inclusion bodies in cultured keratinocytes and in warts. J Virol, 2003, 77(1), 673–84.

    Article  CAS  PubMed  Google Scholar 

  • Bell, I.; Martin, A.; Roberts, S. The E1circumflexE4 protein of human papillomavirus interacts with the serine-arginine-specific protein kinase SRPK1. J Virol, 2007, 81(11), 5437–48.

    Article  CAS  PubMed  Google Scholar 

  • Knight, G. L.; Pugh, A. G.; Yates, E.; Bell, I.; Wilson, R.; Moody, C. A.; Laimins, L. A.; Roberts, S. A cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for association with CDK-cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is not required for differentiation-dependent viral genome amplification or L1 capsid protein expression. Virology, 2011, 412(1), 196–210.

    Google Scholar 

  • Conrad, M.; Bubb, V. J.; Schlegel, R. The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol, 1993, 67(10), 6170–8.

    CAS  PubMed  Google Scholar 

  • Oelze, I.; Kartenbeck, J.; Crusius, K.; Alonso, A. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol, 1995, 69(7), 4489–94.

    CAS  PubMed  Google Scholar 

  • Oetke, C.; Auvinen, E.; Pawlita, M.; Alonso, A. Human papillomavirus type 16 E5 protein localizes to the Golgi apparatus but does not grossly affect cellular glycosylation. Arch Virol, 2000, 145(10), 2183–91.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. L.; Mounts, P. Transforming activity of E5a protein of human papillomavirus type 6 in NIH 3 T3 and C127 cells. J Virol, 1990, 64(7), 3226–33.

    CAS  PubMed  Google Scholar 

  • Leechanachai, P.; Banks, L.; Moreau, F.; Matlashewski, G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene, 1992, 7(1), 19–25.

    CAS  PubMed  Google Scholar 

  • Leptak, C.; Ramon y Cajal, S.; Kulke, R.; Horwitz, B. H.; Riese, D. J., 2nd; Dotto, G. P.; DiMaio, D. Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J Virol, 1991, 65(12), 7078–83.

    CAS  PubMed  Google Scholar 

  • Pim, D.; Collins, M.; Banks, L. Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene, 1992, 7(1), 27–32.

    CAS  PubMed  Google Scholar 

  • Bouvard, V.; Matlashewski, G.; Gu, Z. M.; Storey, A.; Banks, L. The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology, 1994, 203(1), 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Valle, G. F.; Banks, L. The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol, 1995, 76 ( Pt 5), 1239–45.

    Article  PubMed  Google Scholar 

  • Straight, S. W.; Hinkle, P. M.; Jewers, R. J.; McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol, 1993, 67(8), 4521–32.

    CAS  PubMed  Google Scholar 

  • Venuti, A.; Salani, D.; Poggiali, F.; Manni, V.; Bagnato, A. The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth. Virology, 1998, 248(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Stoppler, M. C.; Straight, S. W.; Tsao, G.; Schlegel, R.; McCance, D. J. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology, 1996, 223(1), 251–4.

    Article  CAS  PubMed  Google Scholar 

  • Genther Williams, S. M.; Disbrow, G. L.; Schlegel, R.; Lee, D.; Threadgill, D. W.; Lambert, P. F. Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res, 2005, 65(15), 6534–42.

    Article  CAS  PubMed  Google Scholar 

  • Maufort, J. P.; Shai, A.; Pitot, H. C.; Lambert, P. F. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res, 70(7), 2924–31.

    Google Scholar 

  • Straight, S. W.; Herman, B.; McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J Virol, 1995, 69(5), 3185–92.

    CAS  PubMed  Google Scholar 

  • Suprynowicz, F. A.; Krawczyk, E.; Hebert, J. D.; Sudarshan, S. R.; Simic, V.; Kamonjoh, C. M.; Schlegel, R. The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol, 2010, 84(20), 10619–29.

    Google Scholar 

  • Dannenberg, A. J.; Lippman, S. M.; Mann, J. R.; Subbaramaiah, K.; DuBois, R. N. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol, 2005, 23(2), 254–66.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M. K.; Kim, H. S.; Kim, S. H.; Oh, J. M.; Han, J. Y.; Lim, J. M.; Juhnn, Y. S.; Song, Y. S. Human papillomavirus type 16 E5 oncoprotein as a new target for cervical cancer treatment. Biochem Pharmacol, 80(12), 1930–5.

    Google Scholar 

  • Crusius, K.; Rodriguez, I.; Alonso, A. The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus Genes, 2000, 20(1), 65–9.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, E. S.; Nottoli, T.; Dimaio, D. The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology, 1995, 211(1), 227–33.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. L.; Lin, S. T.; Tsai, T. C.; Hsiao, W. C.; Tsao, Y. P. ErbB4 (JM-b/CYT-1)-induced expression and phosphorylation of c-Jun is abrogated by human papillomavirus type 16 E5 protein. Oncogene, 2007, 26(1), 42–53.

    Article  PubMed  CAS  Google Scholar 

  • Crusius, K.; Auvinen, E.; Steuer, B.; Gaissert, H.; Alonso, A. The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp Cell Res, 1998, 241(1), 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Tsao, Y. P.; Li, L. Y.; Tsai, T. C.; Chen, S. L. Human papillomavirus type 11 and 16 E5 represses p21(WafI/SdiI/CipI) gene expression in fibroblasts and keratinocytes. J Virol, 1996, 70(11), 7535–9.

    CAS  PubMed  Google Scholar 

  • Pedroza-Saavedra, A.; Lam, E. W.; Esquivel-Guadarrama, F.; Gutierrez-Xicotencatl, L. The human papillomavirus type 16 E5 oncoprotein synergizes with EGF-receptor signaling to enhance cell cycle progression and the down-regulation of p27(Kip1). Virology, 2010, 400(1), 44–52.

    Google Scholar 

  • Kim, S. H.; Oh, J. M.; No, J. H.; Bang, Y. J.; Juhnn, Y. S.; Song, Y. S. Involvement of NF-kappaB and AP-1 in COX-2 upregulation by human papillomavirus 16 E5 oncoprotein. Carcinogenesis, 2009, 30(5), 753–7.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. M.; Kim, S. H.; Lee, Y. I.; Seo, M.; Kim, S. Y.; Song, Y. S.; Kim, W. H.; Juhnn, Y. S. Human papillomavirus E5 protein induces expression of the EP4 subtype of prostaglandin E2 receptor in cyclic AMP response element-dependent pathways in cervical cancer cells. Carcinogenesis, 2009, 30(1), 141–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. H.; Juhnn, Y. S.; Kang, S.; Park, S. W.; Sung, M. W.; Bang, Y. J.; Song, Y. S. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell Mol Life Sci, 2006, 63(7–8), 930–8.

    Article  CAS  PubMed  Google Scholar 

  • Kabsch, K.; Alonso, A. The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol, 2002, 76(23), 12162–72.

    Article  CAS  PubMed  Google Scholar 

  • Oh, J. M.; Kim, S. H.; Cho, E. A.; Song, Y. S.; Kim, W. H.; Juhnn, Y. S. Human papillomavirus type 16 E5 protein inhibits hydrogen-peroxide-induced apoptosis by stimulating ubiquitin-proteasome-mediated degradation of Bax in human cervical cancer cells. Carcinogenesis, 2010, 31(3), 402–10.

    Google Scholar 

  • Ashrafi, G. H.; Haghshenas, M.; Marchetti, B.; Campo, M. S. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer, 2006, 119(9), 2105–12.

    Article  CAS  PubMed  Google Scholar 

  • Gu, Z.; Matlashewski, G. Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J Virol, 1995, 69(12), 8051–6.

    CAS  PubMed  Google Scholar 

  • Suprynowicz, F. A.; Disbrow, G. L.; Krawczyk, E.; Simic, V.; Lantzky, K.; Schlegel, R. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin-1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene, 2008, 27(8), 1071–8.

    Article  CAS  PubMed  Google Scholar 

  • Arias-Pulido, H.; Peyton, C. L.; Joste, N. E.; Vargas, H.; Wheeler, C. M. Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J Clin Microbiol, 2006, 44(5), 1755–62.

    Article  CAS  PubMed  Google Scholar 

  • Chang, J. L.; Tsao, Y. P.; Liu, D. W.; Huang, S. J.; Lee, W. H.; Chen, S. L. The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J Biomed Sci, 2001, 8(2), 206–13.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen, E.; Jenkins, A.; Holm, R. Coexistence of episomal and integrated HPV16 DNA in squamous cell carcinoma of the cervix. J Clin Pathol, 1994, 47(3), 253–6.

    Article  CAS  PubMed  Google Scholar 

  • Kirnbauer, R.; Booy, F.; Cheng, N.; Lowy, D. R.; Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A, 1992, 89(24), 12180–4.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. S.; Garcea, R. L.; Goldberg, I.; Casini, G.; Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell, 2000, 5(3), 557–67.

    Article  CAS  PubMed  Google Scholar 

  • Modis, Y.; Trus, B. L.; Harrison, S. C. Atomic model of the papillomavirus capsid. EMBO J, 2002, 21(18), 4754–62.

    Article  CAS  PubMed  Google Scholar 

  • Doorbar, J.; Gallimore, P. H. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J Virol, 1987, 61(9), 2793–9.

    CAS  PubMed  Google Scholar 

  • Trus, B. L.; Roden, R. B.; Greenstone, H. L.; Vrhel, M.; Schiller, J. T.; Booy, F. P. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 A resolution. Nat Struct Biol, 1997, 4(5), 413–20.

    Article  CAS  PubMed  Google Scholar 

  • Finnen, R. L.; Erickson, K. D.; Chen, X. S.; Garcea, R. L. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol, 2003, 77(8), 4818–26.

    Article  CAS  PubMed  Google Scholar 

  • Buck, C. B.; Cheng, N.; Thompson, C. D.; Lowy, D. R.; Steven, A. C.; Schiller, J. T.; Trus, B. L. Arrangement of L2 within the papillomavirus capsid. J Virol, 2008, 82(11), 5190–7.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, Y.; Ozaki, S.; Tanaka, K.; Kanda, T. Human papillomavirus 16 minor capsid protein L2 helps capsomeres assemble independently of intercapsomeric disulfide bonding. Virus Genes, 2005, 31(3), 321–8.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, J.; Panda, D.; Rose, S.; Jensen, T.; Hughes, W. A.; Tso, F. Y.; Angeletti, P. C. Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virol J, 2008, 5, 150.

    Article  PubMed  CAS  Google Scholar 

  • Conway, M. J.; Alam, S.; Christensen, N. D.; Meyers, C. Overlapping and independent structural roles for human papillomavirus type 16 L2 conserved cysteines. Virology, 2009, 393(2), 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren, S. C.; Patterson, N. A.; Ozbun, M. A.; Lambert, P. F. The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol, 2005, 79(7), 3938–48.

    Article  CAS  PubMed  Google Scholar 

  • Okun, M. M.; Day, P. M.; Greenstone, H. L.; Booy, F. P.; Lowy, D. R.; Schiller, J. T.; Roden, R. B. L1 interaction domains of papillomavirus l2 necessary for viral genome encapsidation. J Virol, 2001, 75(9), 4332–42.

    Article  CAS  PubMed  Google Scholar 

  • Karanam, B.; Peng, S.; Li, T.; Buck, C.; Day, P. M.; Roden, R. B. Papillomavirus infection requires gamma secretase. J Virol, 2010, 84(20), 10661–70.

    Google Scholar 

  • Richards, R. M.; Lowy, D. R.; Schiller, J. T.; Day, P. M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A, 2006, 103(5), 1522–7.

    Article  CAS  PubMed  Google Scholar 

  • Kamper, N.; Day, P. M.; Nowak, T.; Selinka, H. C.; Florin, L.; Bolscher, J.; Hilbig, L.; Schiller, J. T.; Sapp, M. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol, 2006, 80(2), 759–68.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, Y.; Tanaka, K.; Kondo, K.; Takeuchi, T.; Mori, S.; Kanda, T. Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. Virology, 2010, 406(2), 181–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Radosevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Xue, J., Vesper, B.J., Radosevich, J.A. (2012). Proteins Encoded by the Human Papillomavirus Genome and Their Functions. In: Radosevich, J. (eds) HPV and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5437-9_2

Download citation

Publish with us

Policies and ethics