Skip to main content

Development of Ultra High-Energy Cosmic Ray Research

  • Chapter
From Ultra Rays to Astroparticles

Abstract

The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kolhörster and Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental contributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon interests focused to the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmosphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renaissance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the example of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The critical energy is the energy at which energy losses by ionisation and bremsstrahlung are equal. The critical energy of electrons in air is appr. 79 MeV.

  2. 2.

    Electronic preprint archive: http://arxiv.org/.

  3. 3.

    The radiation length is an appropriate scale length for describing high-energy electromagnetic cascades. It is both the mean distance over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung, and 7/9 of the mean free path for pair production by a high-energy photon.

  4. 4.

    In 1927 Hoffmann had discovered a phenomenon which became known as “Hoffmann bursts” (Hoffmannsche Stöße) (Hoffmann and Pforte, 1930). In measurements of ionisation currents in an ionisation chamber he found occasional discontinuities of strong currents which were interpreted as nuclear explosions.

  5. 5.

    The “shower size spectrum” or just “size spectrum” is a common notion used for the distribution of the shower size, i.e. of the total number of particles that reached ground. The shower size, N, is obtained by fitting the lateral distribution ρ(r) of shower particles at ground and evaluating the integral \(N=2\pi\int_{0}^{\infty}r\rho(r)\,\mathrm{d}r\).

  6. 6.

    Massachusetts Institute of Technology.

  7. 7.

    The Molière radius is the root mean square distance that an electron at the critical energy is scattered as it traverses one radiation length.

  8. 8.

    http://www-ik.fzk.de/corsika/.

  9. 9.

    S Colgate, private communication to AAW.

  10. 10.

    Tanahashi and Nagano, private communication.

  11. 11.

    Letter from Greisen to Tanahashi, 29 Sept. 1969.

  12. 12.

    This was primarily for reasons of environmental protection arguments that applied to the Campo Imperatore area that was designated a National Park.

References

  • Abraham, J., et al.: Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods A523, 50 (2004)

    ADS  Google Scholar 

  • Abraham, J., et al. (Pierre Auger Collaboration): Correlations of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938 (2007)

    Article  ADS  Google Scholar 

  • Afanasiev, B.N., et al.: Recent rezults from Yakutsk experiment. In: Nagano, M. (ed.) Proc. Tokyo Workshop on the Techniques for the Study of the Extremely High Energy Cosmic Rays, p. 35 (1993)

    Google Scholar 

  • Aglietta, M., et al. (EAS-TOP Collaboration): The EAS-TOP array at E 0=1014–1016 eV: stability and resolutions. Nucl. Instrum. Methods A 277, 23 (1989)

    Article  ADS  Google Scholar 

  • Allan, H.R., et al.: The distribution of energy in extensive air showers and the shower size spectrum. Proc. Phys. Soc. 79, 1170 (1962)

    Article  ADS  Google Scholar 

  • Andrews, D., et al.: Evidence for the existence of cosmic ray particles with E>5×1019 eV. Nature 219, 343 (1968)

    Article  ADS  Google Scholar 

  • Antoni, T., et al. (KASCADE Collaboration): The cosmic-ray experiment KASCADE. Nucl. Instrum. Methods A513, 490 (2003)

    ADS  Google Scholar 

  • Antoni, T., et al. (KASCADE Collaboration): KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems. Astropart. Phys. 24, 1–25 (2005)

    Article  ADS  Google Scholar 

  • Apel, W.D., et al. (KASCADE-Grande Collaboration): The KASCADE-Grande experiment. Nucl. Instrum. Methods A620, 202–216 (2010)

    ADS  Google Scholar 

  • Apel, W.D., et al. (KASCADE-Grande Collaboration): Kneelike structure in the spectrum of the heavy component of cosmic rays. Phys. Rev. Lett. 107, 171104 (2011)

    Article  ADS  Google Scholar 

  • Askaryan, G.A.: Excess negative charge of an electron-photon shower and its coherent radio emission. JETP 14, 441–443 (1962)

    Google Scholar 

  • Auger, P.: In: Sekido, Y., Elliot, H. (eds.) Early History of Cosmic Ray Studies. Reidel, Dordrecht (1985)

    Google Scholar 

  • Auger, P., Maze, R., Robley: Extension et pouvoir pénétrant des grandes gerbes de rayons cosmiques. Comptes Rendus 208, 1641 (1939a)

    Google Scholar 

  • Auger, P., et al.: Extensive cosmic ray showers. Rev. Mod. Phys. 11, 288 (1939b)

    Article  ADS  Google Scholar 

  • Bassi, P., Clark, G., Rossi, B.: Distribution of arrival times of air shower particles. Phys. Rev. A 92, 441 (1953)

    ADS  Google Scholar 

  • Belenki, S.Z., Landau, L.: Hydrodynamic theory of multiple production of particles. Suppl. Nuovo Cim. 3(1), 15 (1956)

    Article  Google Scholar 

  • Bellido, J.A., et al.: Southern hemisphere observations of a 1018 eV Cosmic Ray Source near the direction of the Galactic centre. Astropart. Phys. 15, 167 (2001)

    Article  ADS  Google Scholar 

  • Belyaev, V.A., Chudakov, A.E.: Ionization glow of air and its possible use for air shower detection. Bull. USSR Acad. Sci. Phys. Ser. 30(10), 1700 (1966)

    Google Scholar 

  • Bergeson, H.E., Boone, J.C., Cassiday, G.L.: In: Proc. 14th ICRC, Munich, vol. 8, p. 3059 (1975)

    Google Scholar 

  • Bergeson, H.E., et al.: Measurement of light emission from remote cosmic-ray air showers. Phys. Rev. Lett. 39, 847 (1977)

    Article  ADS  Google Scholar 

  • Bethe, H., Heitler, W.: On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. A 146, 83 (1934)

    Article  ADS  Google Scholar 

  • Bhabha, H., Heitler, W.: The passage of fast electrons and the theory of cosmic showers. Proc. R. Soc. A 159, 432–458 (1937)

    Article  ADS  MATH  Google Scholar 

  • Bird, H.E., et al.: Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys. J. 441, 144–150 (1995)

    Article  ADS  Google Scholar 

  • Blackett, P.M.S.: In: Proceedings of the International Conference on the Emission Spectra of the Night Sky and Aurorae, pp. 34–35. Physical Society, London (1947)

    Google Scholar 

  • Blackett, P.M.S.: Cloud chamber researches in nuclear physics and cosmic radiation. Nobel Lecture (13 December, 1948)

    Google Scholar 

  • Blackett, P.M.S., Occhialini, G.: Photography of penetrating corpuscular radiation. Nature 130, 363 (1932)

    Article  ADS  Google Scholar 

  • Borione, A., et al.: A large air shower array to search for astrophysical sources emitting γ-rays with energies >1014 eV. Nucl. Instrum. Methods 346, 329 (1994)

    Article  ADS  Google Scholar 

  • Bothe, W.: Zur Vereinfachung von Koinzidenzzählungen. Z. Phys. 59, 1–5 (1929)

    ADS  Google Scholar 

  • Bunner, A.N.: The atmosphere as a cosmic ray scintillator. Master Thesis, Cornell University (1964)

    Google Scholar 

  • Bunner, A.N.: The atmosphere as a cosmic ray scintillator. PhD Thesis, Cornell University (1967)

    Google Scholar 

  • Bunner, A.N., Greisen, K., Landecker, P.B.: An imaging system for EAS optical emission. Can. J. Phys. 46, S266 (1968)

    Article  Google Scholar 

  • Carlson, J.F., Oppenheimer, J.R.: On multiplicative showers. Phys. Rev. 51, 220 (1937)

    Article  ADS  Google Scholar 

  • Chudakov, A.E., et al.: In: Proc. 6th ICRC, Moscow, vol. II, p. 50 (1960)

    Google Scholar 

  • Clark, W.G.: The scientific legacy of Bruno Rossi. Università degli Padova, 7 (2006)

    Google Scholar 

  • Clark, G.W., et al.: An experiment in air showers produced by high-energy cosmic rays. Nature 180, 353 (1957)

    Article  ADS  Google Scholar 

  • Clark, G., et al.: The M.I.T. air shower program Suppl. Nuovo Cim. 8, 623 (1958)

    Article  Google Scholar 

  • Clark, G.W., et al.: Cosmic-ray air showers at sea level. Phys. Rev. 122(2), 637 (1961)

    Article  ADS  Google Scholar 

  • Clay, R.W., et al.: Cosmic rays from the galactic center. Astropart. Phys. 12, 249 (2000)

    Article  ADS  Google Scholar 

  • Cocconi, G., Koester, L.J., Perkins, D.H.: Calculation of particle fluxes. Lawrence Berkeley Laboratory Report LBL 10022, pp. 167–192 (1962)

    Google Scholar 

  • Compton, A.H., Getting, I.A.: An apparent effect of galactic rotation on the intensity of cosmic rays. Phys. Rev. 47, 817 (1935)

    Article  ADS  MATH  Google Scholar 

  • Cranshaw, T.E.: Cosmic Rays. Clarendon Press, Oxford (1963)

    Google Scholar 

  • Cranshaw, T.E., Galbraith, W.: Philos. Mag. 45, 1109 (1954)

    Google Scholar 

  • Cranshaw, T.E., Galbraith, W.: Philos. Mag. 2, 797 (1957)

    Article  ADS  Google Scholar 

  • Dawson, B.: Comment on a Japanese detection of fluorescence light from a cosmic ray shower in 1969 (2011). arXiv:1112.5686

  • Falcke, H., Gorham, P.W.: Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope. Astropart. Phys. 19, 477 (2003)

    Article  ADS  Google Scholar 

  • Falcke, H., et al. (LOPES Collaboration): Detection and imaging of atmospheric radio flashes from cosmic ray air showers. Nature 435, 313 (2005)

    Article  ADS  Google Scholar 

  • Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169 (1949)

    Article  ADS  MATH  Google Scholar 

  • Fermi, E.: High energy nuclear events. Prog. Theor. Phys. 5(4), 570 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  • Fermi, E.: Angular distribution of the pions produced in high energy nuclear collisions. Phys. Rev. 81(5), 683 (1951)

    Article  ADS  MATH  Google Scholar 

  • Fretter, W.B.: In: Proceedings of Echo Lake Cosmic Ray Symposium (1949)

    Google Scholar 

  • Fukui, S., et al.: A study on the structure of the extensive air shower. Prog. Theor. Phys. Suppl. 16, 1–53 (1960)

    Article  ADS  Google Scholar 

  • Galbraith, W.: Extensive Air Showers. Academic Press, San Diego (1958)

    Google Scholar 

  • Galbraith, W., Jelley, J.V.: Light pulses from the night sky associated with cosmic rays. Nature 171, 349 (1953)

    Article  ADS  Google Scholar 

  • Geiger, H., Müller, W.: Elektronenzählrohr zur Messung schwächster Aktivitäten. Naturwissenschaften 31, 617–618 (1928)

    Article  ADS  Google Scholar 

  • Gorham, P.W., et al.: Observations of microwave continuum emission from air shower plasmas. Phys. Rev. D 78, 032007 (2008)

    Article  ADS  Google Scholar 

  • Gould, R.J., Schréder, G.: Opacity of the universe to high-energy photons. Phys. Rev. Lett. 16, 252 (1966)

    Article  ADS  Google Scholar 

  • Greisen, K.: Prog. Cosm. Ray Phys. 3, 1–141 (1956)

    Google Scholar 

  • Greisen, K.: Cosmic ray showers. Annu. Rev. Nucl. Part. Sci. 10, 63 (1960)

    Article  ADS  Google Scholar 

  • Greisen, K.: End to the cosmic ray spectrum? Phys. Rev. Lett. 16, 748 (1966a)

    Article  ADS  Google Scholar 

  • Greisen, K.: In: Proc. 9th ICRC, London, vol. 2, p. 609 (1966b)

    Google Scholar 

  • Hara, T., et al.: Detection of the atmospheric scintillation light from air showers. Acta Phys. Acad. Sci. Hung. 29, 369 (1970)

    Google Scholar 

  • Heisenberg, W.: Zur Theorie der Schauer in der Höhenstrahlung. Z. Phys. 101, 533 (1936)

    Article  ADS  Google Scholar 

  • Hersil, J., et al.: Observations of extensive air showers near the maximum of their longitudinal development. Phys. Rev. Lett. 6(1), 22 (1961)

    Article  ADS  Google Scholar 

  • Hersil, J., et al.: Extensive air showers at 4200 m. J. Phys. Soc. Jpn. 17, 243 (1962)

    Article  Google Scholar 

  • Hess, V.F.: Über die Beobachtungen der durchdringenden Strahlung bei sieben Freiballonflügen. Phys. Z. 8, 1084 (1912)

    Google Scholar 

  • Hillas, A.M.: Cosmic Rays. Pergamon Press, Elmsford (1972)

    Google Scholar 

  • Hillas, A.M.: Two interesting techniques for Monte Carlo simulation of very high-energy hadron cascades. In: Linsley, J., Hillas, A.M. (eds.) Proc. of the Paris Workshop on Cascade Simulations, p. 193 (1982).

    Google Scholar 

  • Hillas, A.M.: The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984)

    Article  ADS  Google Scholar 

  • Hoffmann, G., Pforte, W.S.: Zur Struktur der Ultrastrahlung. Phys. Z. 31, 347 (1930)

    Google Scholar 

  • Hoover, S., et al.: Observation of ultrahigh-energy cosmic rays with the ANITA Balloon-Borne radio interferometer. Phys. Rev. Lett. 105, 151101 (2010)

    Article  ADS  Google Scholar 

  • Ito, N., et al.: In: Proc. 25th ICRC, Durban, vol. 4, p. 117 (1997)

    Google Scholar 

  • Jelley, J.V.: High-energy γ-ray absorption in space by a 3.5 K microwave field. Phys. Rev. Lett. 16, 479 (1966)

    Article  ADS  Google Scholar 

  • Kamata, K., Nishimura, J.: The lateral and the angular structure functions of electron showers. Prog. Theor. Phys. Suppl. 6, 93 (1958)

    Article  ADS  Google Scholar 

  • Kameda, T., Toyoda, Y., Maeda, T.: J. Phys. Soc. Jpn. 15, 1565 (1960)

    Article  ADS  Google Scholar 

  • Kampert, K.-H., Unger, M.: Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 35, 660 (2012)

    Article  ADS  Google Scholar 

  • Khristiansen, G.B., et al.: The EAS-1000 array. Ann. N.Y. Acad. Sci. 571, 640 (1989)

    Article  ADS  Google Scholar 

  • Knapp, J.: In: Proc. 25th ICRC, Durban, vol. 8, p. 83 (1997)

    Google Scholar 

  • Kolhörster, W., Matthes, I., Weber, E.: Gekoppelte Höhenstrahlen. Naturwissenschaften 26, 576 (1938)

    Article  ADS  Google Scholar 

  • Krieger, A.S., Bradt, H.V.: Cherenkov light in extensive air showers and the chemical composition of primary cosmic rays at 1016 eV. Phys. Rev. 185, 1629 (1969)

    Article  ADS  Google Scholar 

  • Kulikov, G.V., Khristiansen, G.B.: On the size spectrum of extensive air showers. JETP 35, 441 (1959)

    Google Scholar 

  • Kulikov, K., et al.: In: Proc. 9th ICRC, London (1965)

    Google Scholar 

  • Linsley, J.: In: Proceedings of the 8th International Cosmic Ray Conference, Jaipur, vol. 4, p. 77 (1963a)

    Google Scholar 

  • Linsley, J.: Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys. Rev. Lett. 10(4), 146 (1963b)

    Article  ADS  Google Scholar 

  • Linsley, J.: In: Proc. 15th ICRC, Plovdiv, vol. 12, p. 89 (1977)

    Google Scholar 

  • Linsley, J.: Study of 1020 eV cosmic rays by observing air showers from a platform in space, response to Call for Projects and Ideas in High Energy Astrophysics for the 1980’s, Astronomy Survey Committee (Field Committee) (1979)

    Google Scholar 

  • Linsley, J.: In: Wada, M. (ed.) Catalogue of Highest Energy Cosmic Rays. World Data Center of Cosmic Rays, Institute of Physical and Chemical Research, Itabashi, Tokyo (1980)

    Google Scholar 

  • Linsley, J., Hillas, A.M.: In: Proc. of the Paris Workshop on Cascade Simulations. Texas Center for the Advancement of Science and Technology, Texas (1982)

    Google Scholar 

  • Linsley, J., Scarsi, L., Rossi, B.: Extremely energetic cosmic-ray event. Phys. Rev. Lett. 6, 485 (1961)

    Article  ADS  Google Scholar 

  • Lloyd-Evans, J., et al.: Observations of γ-rays >1015 eV from cygnus X-3. Nature 305, 784 (1983)

    Article  ADS  Google Scholar 

  • Matthews, J.: A Heitler model of extensive air showers. Astropart. Phys. 22, 387 (2005)

    Article  ADS  Google Scholar 

  • Maze, R.: Étude d’un appareil à grand pouvoir de résolution pour rayons cosmiques. J. Phys. Radium 9(4), 162–168 (1938)

    Article  MathSciNet  Google Scholar 

  • McCusker, C.B.A., Winn, M.M.: A new method of recording large cosmic-ray air showers. Nuovo Cimento 28, 175 (1963)

    Article  Google Scholar 

  • Nagano, M., Watson, A.A.: Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689 (2000)

    Article  ADS  Google Scholar 

  • Navarra, G.: Cosmic ray composition and hadronic interactions in the knee region. Nucl. Phys. B, Proc. Suppl. 151(1), 79–82 (2006)

    Article  MathSciNet  Google Scholar 

  • Nikolsky, S.I.: In: Proceedings of 5th Interamerican Seminar on Cosmic Rays, vol. 2. Universidad Mayor de San Andreas, La Paz, Bolivia (1962)

    Google Scholar 

  • Olbert, S.: Theory of high-energy N-component cascades. Ann. Phys. 1, 247–269 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  • Peters, B.: Primary cosmic radiation and extensive air showers. Nuovo Cimento 22, 800 (1961)

    Article  Google Scholar 

  • Pfotzer, G.: Dreifachkoinzidenzen der Ultrastrahlung aus vertikaler Richtung in der Stratosphere. Z. Phys. 102, 41 (1936)

    Article  ADS  Google Scholar 

  • Porter, N.A., et al.: Philos. Mag. 3, 826 (1958)

    Article  ADS  Google Scholar 

  • Regener, E., Ehmert, A.: Über die Schauer der kosmischen Ultrastrahlung in der Stratosphäre. Z. Phys. 111, 501 (1938)

    ADS  Google Scholar 

  • Regener, E., Pfotzer, G.: Vertical intensity of cosmic rays by treefold coincidences in the stratosphere. Nature 136, 718 (1935)

    Article  ADS  Google Scholar 

  • Rossi, B.: Method of registering multiple simultaneous impulses of several Geiger’s counters. Nature 125, 636 (1930)

    Article  ADS  Google Scholar 

  • Rossi, B.: Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau. Z. Phys. 82, 151 (1933)

    Article  ADS  Google Scholar 

  • Rossi, B.: Misure sulla distribuzione angolare di intensita della radiazione penetrante all’ Asmara. Suppl. Ric. Sci. 1, 579 (1934)

    Google Scholar 

  • Rossi, B.: In: Sekido, Y., Elliot, H. (eds.) Early History of Cosmic Ray Studies. Reidel, Dordrecht (1985)

    Google Scholar 

  • Rossi, B., Greisen, K.: Cosmic-ray theory. Rev. Mod. Phys. 13, 240 (1941)

    Article  ADS  Google Scholar 

  • Saltzberg, D., et al.: Observation of the Askaryan effect: coherent microwave Cherenkov emission. Phys. Rev. Lett. 86, 2802 (2001)

    Article  ADS  Google Scholar 

  • Samorski, M., Stamm, W.: Detection of 2×1015 to 2×1016 eV γ-rays from Cygnus X-3. Astrophys. J. 268, L17 (1983)

    Article  ADS  Google Scholar 

  • Schmeiser, K., Bothe, W.: Die harten Ultrastrahlschauer. Ann. Phys. 424, 161 (1938)

    Article  Google Scholar 

  • Skobeltzyn, D.V.: Die Intensitätsverteilung in dem Spektrum der γ-Strahlen von RaC. Z. Phys. 43, 354 (1927)

    Article  ADS  Google Scholar 

  • Skobeltzyn, D.V.: Über eine neue Art sehr schneller β-Strahlen. Z. Phys. 54, 686 (1929)

    Article  ADS  Google Scholar 

  • Skobeltzyn, D.V., Zatsepin, G.T., Miller, V.V.: The lateral extension of auger showers. Phys. Rev. 71, 315 (1947)

    Article  ADS  Google Scholar 

  • Sokolsky, P., Thomson, G.B.: Highest energy cosmic rays and results from the HiRes experiment. J. Phys. G 34, R401 (2007)

    Article  ADS  Google Scholar 

  • Suga, K.: In: Proceedings of 5th Interamerican Seminar on Cosmic Rays, vol. 2. Universidad Mayor de San Andreas, La Paz, Bolivia (1962)

    Google Scholar 

  • Suga, K., Clark, G.W., Escobar, I.: Scintillation detector of 4 m2 area and transistorized amplifier with logarithmic response. Rev. Sci. Instrum. 32, 1187 (1961)

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Kovaltsov, G.A.: Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res. 111, D21 (2006)

    Article  Google Scholar 

  • Wilson, R.R.: Monte Carlo study of shower production. Phys. Rev. 86(3), 261 (1952)

    Article  ADS  Google Scholar 

  • Winn, M.M., et al.: The cosmic-ray energy spectrum above 1017 eV. J. Phys. G 12, 653 (1986a)

    Article  ADS  Google Scholar 

  • Winn, M.M., et al.: The arrival directions of cosmic rays above 1017 eV. J. Phys. G 12, 675 (1986b)

    Article  ADS  Google Scholar 

  • Zatsepin, G.T., Kuzmin, V.A.: Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78 (1966)

    ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge stimulating discussions and generous support given by Luisa Bonolis, Antonella Castellina, Bruce Dawson, Piera Ghia, Antoine Letessier-Selvon, Maria Concetta Maccarone, Marco Segala, Mike Walter, and many other colleagues for helping us to access to some of the original key papers distributed in various archives around the world. KHK also acknowledges financial support by the German Ministry for Research and Education (BMBF) and by the Helmholtz Alliance for Astroparticle Physics and AAW acknowledges the UK Science and Technology Council and the Leverhalme Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Kampert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kampert, KH., Watson, A.A. (2012). Development of Ultra High-Energy Cosmic Ray Research. In: Falkenburg, B., Rhode, W. (eds) From Ultra Rays to Astroparticles. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5422-5_5

Download citation

Publish with us

Policies and ethics