Skip to main content

Symbolic Sensitivity Analysis of Multibody Systems

  • Chapter
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 28))

Abstract

Sensitivity analysis is the process of apportioning changes in the response of the system into the perturbations of the system parameters. In this chapter, we will present an overview of various issues regarding sensitivity analysis of multibody systems using symbolic formulations. Symbolic formulation for multibody system simulation has been demonstrated to have a number of benefits (Samin and Fisette in Symbolic Modeling of Multibody Systems, 2004), and has proven itself to be a very important tool for efficient sensitivity analysis. We present a detailed literature review of the subject, highlighting the challenges and the diverse applications of sensitivity analysis. We identify direct differentiation as a key approach towards symbolic sensitivity for its simplicity and accuracy. We will discuss software implementation and issues regarding the efficiency of the process of sensitivity analysis. We will present an overview of generation of sensitivity equations and using numerical examples, we will outline different approaches towards the evaluation of sensitivity information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, K., Hsu, Y.: Order (n+m) direct differentiation determination of design sensitivity for constrained multibody dynamic systems. Struct. Multidiscip. Optim. 26, 171–182 (2004). doi:10.1007/s00158-003-0336-1

    Article  Google Scholar 

  2. Anderson, K.S., Hsu, Y.: Analytical fully-recursive sensitivity analysis for multibody dynamic chain systems. Multibody Syst. Dyn. 8, 1–27 (2002). doi:10.1023/A:1015867515213

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, J.M., Dao, T.S., McPhee, J.: Mathematical modeling and symbolic sensitivity analysis of Ni-MH batteries. In: Advanced Battery Technology, SP-2310. SAE International, Warrendale (2011)

    Google Scholar 

  4. Barrio, R.: Sensitivity analysis of ODES/DAES using the Taylor series method. SIAM J. Sci. Comput. 27, 1929–1947 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bestle, D., Eberhard, P.: Analyzing and optimizing multi-body systems. Mech. Struct. Mach. 62, 181–190 (1992)

    MATH  Google Scholar 

  6. Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62, 181–190 (1992)

    MATH  Google Scholar 

  7. Bhalerao, K., Poursina, M., Anderson, K.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23, 121–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bischof, C.H.: On the automatic differentiation of computer programs and an application to multibody systems. In: ICIAM/GAMM 95: Issue 1: Numerical Analysis, Scientific Computing, Computer Science, pp. 267–272 (1995)

    Google Scholar 

  9. Cabanellas, J.M., Félez, J., Vera, C.: A formulation of the sensitivity analysis for dynamic systems optimization based on pseudo bond graphs. In: Cellier, F.E., Granda, J.J. (eds.) Proceedings of the International Conference on Bond Graph Modeling and Simulation. Simulation Series, vol. 27, pp. 135–144. Society of Computer Simulation, Las Vegas (1995)

    Google Scholar 

  10. Campbell, S.L., Hollenbeck, R.: Automatic differentiation and implicit differential equations. In: Computational Differentiation: Techniques, Applications and Tools, pp. 215–227 (1996)

    Google Scholar 

  11. Cao, Y., Li, S., Petzold, L.: Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software. J. Comput. Appl. Math. 149(1), 171–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caracotsios, M., Stewart, W.E.: Sensitivity analysis of initial value problems with mixed odes and algebraic equations. Comput. Chem. Eng. 9(4), 359–365 (1985)

    Article  Google Scholar 

  14. Carr, S., Savage, G.J.: Symbolic sensitivity analysis of nonlinear physical systems using graph theoretic modeling. In: Mathematical Computation with Maple V. Ideas and Applications. Proceedings of the Maple Summer Workshop and Symposium, pp. 118–127. University of Michigan, Ann Arbor (1995)

    Google Scholar 

  15. Cash, J.R.: Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs. J. Comput. Appl. Math. 125, 117–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chang, C.O., Nikravesh, P.E.: Optimal design of mechanical systems with constraint violation stabilization method. J. Mech. Transm. Autom. Des. 107, 493–498 (1985)

    Article  Google Scholar 

  17. Chang, Y., Corliss, G.: ATOMFT: solving ODEs and DAEs using Taylor series. Comput. Math. Appl. 28(1012), 209–233 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chaniotis, D., Pai, M., Hiskens, I.: Sensitivity analysis of differential-algebraic systems using the GMRES method-application to power systems. In: The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, vol. 3, pp. 117–120 (2001)

    Google Scholar 

  19. Corliss, G., Chang, Y.F.: Solving ordinary differential equations using Taylor series. ACM Trans. Math. Softw. 8, 114–144 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dias, J., Pereira, M.: Sensitivity analysis of rigid-flexible multibody systems. Multibody Syst. Dyn. 1, 303–322 (1997)

    Article  MATH  Google Scholar 

  21. Ding, J.Y., Pan, Z.K., Chen, L.Q.: Second-order sensitivity analysis of multibody systems described by differential-algebraic equations: adjoint variable approach. Int. J. Comput. Math. 85, 899–913 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eberhard, P., Bischof, C.: Automatic differentiation of numerical integration algorithms. Math. Comput. 68(226), 717–731 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feehery, W.F., Tolsma, J.E., Barton, P.I.: Efficient sensitivity analysis of large-scale differential-algebraic systems. Appl. Numer. Math. 25(1), 41–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fisette, P., Postiau, T., Sass, L., Samin, J.C.: Fully symbolic generation of complex multibody models. Mech. Struct. Mach. 30(1), 31–82 (2002)

    Article  Google Scholar 

  25. Gawthrop, P.J.: Sensitivity bond graphs. J. Franklin Inst. 337(7), 907–922 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gawthrop, P.J., Ronco, E.: Estimation and control of mechatronic systems using sensitivity bond graphs. Control Eng. Pract. 8(11), 1237–1248 (2000)

    Article  Google Scholar 

  27. Griewank, A.: On automatic differentiation. In: Proceedings of Mathematical Programming: Recent Developments and Applications (1989)

    Google Scholar 

  28. Haug, E.J.: Design sensitivity analysis of dynamic systems. In: Computer Aided Optimal Design: Structural and Mechanical Systems. NATO ASI Series, vol. F27, pp. 705–755. Springer, London (1987)

    Chapter  Google Scholar 

  29. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hsu, Y., Anderson, K.: Recursive sensitivity analysis for constrained multi-rigid-body dynamic systems design optimization. Struct. Multidiscip. Optim. 24, 312–324 (2002)

    Article  Google Scholar 

  31. Hwang, R.S., Haug, E.J.: Topological analysis of multibody systems for recursive dynamics formulations. Mech. Struct. Mach. 17(2), 239–258 (1989)

    Article  MathSciNet  Google Scholar 

  32. Ingalls, B.: Sensitivity analysis: from model parameters to system behaviour. Essays Biochem. 45, 177–193 (2008)

    Article  Google Scholar 

  33. Krishnaswami, P., Wehage, R.A., Haug, E.J.: Design sensitivity analysis of constrained dynamic systems by direct differentiation. Tech. Rep. 83-5, Center for Computer-Aided Design, The University of Iowa, Iowa City (1983)

    Google Scholar 

  34. Leamer, E.E.: Let’s take the con out of econometrics, and sensitivity analysis would help. In: Granger, C. (ed.) Modeling Economics. Clarendon, Oxford (1990)

    Google Scholar 

  35. Maly, T., Petzold, L.R.: Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl. Numer. Math. 20(12), 57–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mukherjee, R., Bhalerao, K., Anderson, K.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct. Multidiscip. Optim. 35, 413–429 (2008)

    Article  MathSciNet  Google Scholar 

  37. Perry, M., Atherton, M.A., Bates, R.A., Wynn, H.P.: Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design. J. Franklin Inst. 345(3), 282–292 (2008)

    Article  MATH  Google Scholar 

  38. Pesch, V.J., Hinkle, C.L., Tortorelli, D.A.: Optimization of planar mechanism kinematics with symbolic computation. In: Proceedings of the IUTAM Symposium on Optimization of Mechanical Systems, pp. 221–230 (1996)

    Chapter  Google Scholar 

  39. Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Comput. Chem. Eng. 30(10–12), 1553–1559 (2006)

    Article  Google Scholar 

  40. Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems. Solid Mechanics and Its Applications, vol. 112. Springer, Berlin (2004)

    Google Scholar 

  41. Sandu, A., Daescu, D.N., Carmichael, G.R.: Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP. Part 1: Theory and software tools. Atmos. Environ. 37(36), 5083–5096 (2003)

    Article  Google Scholar 

  42. Sass, L., McPhee, J., Schmitke, C., Fisette, P., Grenier, D.: A comparison of different methods for modelling electromechanical multibody systems. Multibody Syst. Dyn. 12, 209–250 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Savage, G.J.: Automatic formulation of higher order sensitivity models. Civ. Eng. Syst. 10(4), 335–350 (1993)

    Article  Google Scholar 

  44. Schmitke, C., McPhee, J.: Using linear graph theory and the principle of orthogonality to model multibody, multi-domain systems. Adv. Eng. Inform. 22, 147–160 (2008)

    Article  Google Scholar 

  45. Schwieger, V.: Sensitivity analysis as a general tool for model optimisation—examples for trajectory estimation. J. Appl. Geodesy 1(1), 27–34 (2007)

    Google Scholar 

  46. Serban, R.: A parallel computational model for sensitivity analysis in optimization for robustness. Optim. Methods Softw. 24, 105–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Serban, R., Freeman, J.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5, 335–350 (2001)

    Article  MATH  Google Scholar 

  48. Serban, R., Freeman, J.S.: Direct differentiation methods for the design sensitivity of multi-body dynamic systems. In: Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, pp. 18–22 (1996)

    Google Scholar 

  49. Serban, R., Haug, E.J.: Kinematic and kinetic derivatives in multibody system analysis. Mech. Struct. Mach. 26(2), 145–173 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep M. Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Banerjee, J.M., McPhee, J. (2013). Symbolic Sensitivity Analysis of Multibody Systems. In: Samin, JC., Fisette, P. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5404-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5404-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5403-4

  • Online ISBN: 978-94-007-5404-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics