Skip to main content

Macroscopic Pigmented Skin Lesion Segmentation and Its Influence on Lesion Classification and Diagnosis

  • Chapter
Color Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 6))

Abstract

Melanoma is a type of malignant pigmented skin lesion, and currently is among the most dangerous existing cancers. However, differentiating malignant and benign cases is a hard task even for experienced specialists, and a computer-aided diagnosis system can be an useful tool. Usually, the system starts by pre-processing the image, i.e. removing undesired artifacts such as hair, freckles or shading effects. Next, the system performs a segmentation step to identify the lesion boundaries. Finally, based on the image area identified as lesion, several features are computed and a classification is provided. In this chapter we describe all these steps, giving special attention to segmentation approaches for pigmented skin lesions, proposed for standard camera images (i.e. simple color photographs). Next, we compare the segmentation results to identify which techniques have more accurate results, and discuss how these results may influence in the following steps: the feature extraction and the final lesion classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The rim is dilated by 2 pixels, producing a 5 pixels wide region centered at the lesion rim, as suggested in [17].

References

  1. World Health Organization. How commom is skin cancer? http://www.who.int/uv/faq/skincancer/en/index1.html

  2. Rao BK, Marghoob AA, Stolz W, Kopf AW, Slade J, Wasti Q, Schoenbach SP, De-David M, Bart RS (1997) Can early malignant melanoma be differentiated from atypical melanocytic nevi by in vivo techniques? Skin Res Technol 3(1):8–14

    Article  Google Scholar 

  3. Fikrle T, Pizinger K (2007) Digital computer analysis of dermatoscopical images of 260 melanocytic skin lesions; perimeter/area ratio for the differentiation between malignant melanomas and melanocytic nevi. J Eur Acad Dermatol Venereol 21:48–55

    Article  Google Scholar 

  4. Mayer J (1997) Systematic review of the diagnostic accuracy of dermatoscopy in detecting malignant melanoma. Med J Aust 167:206–210

    Google Scholar 

  5. Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373

    Article  Google Scholar 

  6. Celebi ME, Kingravi HA, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, Menzies SW (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14:347–353

    Article  Google Scholar 

  7. Gomez DD, Butakoff C, Ersboll BK, Stoecker W (2008) Independent histogram pursuit for segmentation of skin lesions. IEEE Trans Biomed Eng 55:157–161

    Article  Google Scholar 

  8. Iyatomi H, Oka H, Celebi M, Hashimoto M, Hagiwara M, Tanaka M, Ogawa K (2008) An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph 32(7):566–579

    Article  Google Scholar 

  9. Zhou H, Schaefer G, Sadka A, Celebi M (2009) Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Sel Top Signal Process 3:26–34

    Article  Google Scholar 

  10. Zhou H, Schaefer G, Celebi ME, Lin F, Liu T (2011) Gradient vector flow with mean shift for skin lesion segmentation. Comput Med Imaging Graph 35(2):121–127

    Article  Google Scholar 

  11. Skvara H, Teban L, Fiebiger M, Binder M, Kittler H (2005) Limitations of dermoscopy in the recognition of melanoma. Arch Dermatol 141:155–160

    Article  Google Scholar 

  12. Massone C, Wurm EMT, Hofmann-Wellenhof R, Soyer HP (2008) Teledermatology: an update. Semin Cutan Med Surg 27:101–105

    Article  Google Scholar 

  13. Whited JD (2006) Teledermatology research review. Int J Dermatol 45:220–229

    Article  Google Scholar 

  14. Manousaki AG, Manios AG, Tsompanaki EI, Panayiotides JG, Tsiftsis DD, Kostaki AK, Tosca AD (2006) A simple digital image processing system to aid in melanoma diagnosis in an everyday melanocytic skin lesion unit: a preliminary report. Int J Dermatol 45:402–410

    Article  Google Scholar 

  15. Ruiz D, Berenguer VJ, Soriano A, Martin J (2008) A cooperative approach for the diagnosis of the melanoma. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society (EMBC), vol 2008, pp 5144–5147

    Chapter  Google Scholar 

  16. Tabatabaie K, Esteki A, Toossi P (2009) Extraction of skin lesion texture features based on independent component analysis. Skin Res Technol 15:433–439

    Article  Google Scholar 

  17. Alcon JF, Ciuhu C, ten Kate W, Heinrich A, Uzunbajakava N, Krekels G, Siem D, de Haan G (2009) Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Signal Process 3:14–25

    Article  Google Scholar 

  18. Parolin A, Herzer E, Jung C (2010) Semi-automated diagnosis of melanoma through the analysis of dermatological images. In: 23rd conference on graphics, patterns and images (SIBGRAPI), pp 71–78

    Chapter  Google Scholar 

  19. Tang J (2009) A multi-direction gvf snake for the segmentation of skin cancer images. Pattern Recognit 42:1172–1179

    Article  Google Scholar 

  20. Cavalcanti PG, Scharcanski J (2011) Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph 35(6):481–491

    Article  Google Scholar 

  21. Cavalcanti PG, Scharcanski J, Persia LED, Milone DH (2011) An ica-based method for the segmentation of pigmented skin lesions in macroscopic images. In: Proceedings of the 33rd annual international conference of the IEEE engineering in medicine and biology society (EMBC)

    Google Scholar 

  22. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19:1635–1650

    Article  MathSciNet  Google Scholar 

  23. Zhou H, Miller P, Zhang J (2011) Age classification using radon transform and entropy based scaling svm. In: Proceedings of the British machine vision conference. BMVA Press, Guildford, pp 28.1–28.12. doi:10.5244/C.25.28

    Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  25. Cavalcanti P, Yari Y, Scharcanski J (2010) Pigmented skin lesion segmentation on macroscopic images. In: Proceedings of the 25th international conference on image and vision computing, New Zealand

    Google Scholar 

  26. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan F, Zhang H, Kube CR (2005) A multistage adaptive thresholding method. Pattern Recognit Lett 26:1183–1191

    Article  Google Scholar 

  28. Chan TF, Sandberg BY, Vese LA (2000) Active contours without edges for vector-valued images. J Vis Commun Image Represent 11(2):130–141

    Article  Google Scholar 

  29. Silveira M, Nascimento J, Marques J, Marcal A, Mendonca T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process 3:35–45

    Article  Google Scholar 

  30. Dermnet skin disease image atlas. http://www.dermnet.com

  31. Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler M, Bilek P, Braun-Falco O, Plewig G (1994) The abcd rule of dermatoscopy: high prospective value in the diagnosis of doubtful melanocytic skin lesions. J Am Acad Dermatol 30(4):551–559

    Article  Google Scholar 

  32. Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H (2001) Automated melanoma recognition. IEEE Trans Med Imaging 20:233–239

    Article  Google Scholar 

  33. Aksoy S, Haralick RM (2000) Probabilistic vs. geometric similarity measures for image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 13–15 June 2002, vol 2, pp 357–362

    Chapter  Google Scholar 

  34. Bishop CM (2007) Pattern recognition and machine learning, 1st edn. Information science and statistics. Springer, Berlin

    Google Scholar 

  35. Young GA (1990) Alternative smoothed bootstraps. J R Stat Soc, Ser B, Methodol 52(3):477–484

    Google Scholar 

  36. Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M (2001) A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inform 34:28–36

    Article  Google Scholar 

  37. Burroni M, Corona R, Dell’Eva G, Sera F, Bono R, Puddu P, Perotti R, Nobile F, Andreassi L, Rubegni P (2004) Melanoma computer-aided diagnosis: reliability and feasibility study. Clin Cancer Res 10:1881–1886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo G. Cavalcanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cavalcanti, P.G., Scharcanski, J. (2013). Macroscopic Pigmented Skin Lesion Segmentation and Its Influence on Lesion Classification and Diagnosis. In: Celebi, M., Schaefer, G. (eds) Color Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5389-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5389-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5388-4

  • Online ISBN: 978-94-007-5389-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics