Skip to main content

Advanced Laser Diagnostics for Understanding Turbulent Combustion and Model Validation

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

Abstract

This contribution is not an original publication but a report of cumulative work that was carried out within the framework of SFB 568. The work was published in different archival journals and figures and text passages have been taken from different journal articles as indicated by the references. The aim of this report is to present experiments in projects B1 and B3 for improving our understanding in turbulent combustion with a focus of turbulent flow and scalar fields as well as their mutual interactions. The report is restricted to generic gaseous turbulent flames that feature different characteristics important to practical applications. The methods presented here are feasible to study boundary conditions, flow and scalar fields and are based all on interactions between laser light and matter. Following a brief introduction, two target flames are discussed in Sect. 4.2. Sections 4.3 and 4.4 exemplify flow and scalar measurements. Section 4.5 discusses combined scalar/flow measurements that can significantly improve our understanding of turbulence-chemistry interactions. In Sect. 4.6 new developments based on high-repetition-rate imaging are highlighted. These diagnostics complement methods at low repetition rate commonly used to generate an understanding by statistical moments and probability density functions. High repetition rate imaging techniques presently are an emerging field. Although the most recent developments achieved in the funding period of the Collaborative Research Center are included to this report, near-future progress in this field will lead to even more interesting insights into combustion phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Project-Related Publications

  1. Geyer, D., et al.: Finite rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulation. Proc. Combust. Inst. 30, 711–718 (2005)

    Article  Google Scholar 

  2. Geyer, D., et al.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)

    Article  Google Scholar 

  3. Böhm, B., et al.: In-Nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85, 73–93 (2010)

    Article  MATH  Google Scholar 

  4. Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)

    Article  MATH  Google Scholar 

  5. Gregor, M.A., et al.: Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc. Combust. Inst. 32, 1739–1746 (2009)

    Article  Google Scholar 

  6. Nauert, A., et al.: Experimental analysis of flash back in lean premixed swirling flames: conditions close to flash back. Exp. Fluids 43, 89–100 (2007)

    Article  Google Scholar 

  7. Geyer, D., et al.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)

    Article  Google Scholar 

  8. Omar, S.K., et al.: Investigation of flame structures in turbulent partially premixed counter-flow flames using laser-induced fluorescence. Prog. Comput. Fluid Dyn. 4, 241–249 (2004)

    Article  Google Scholar 

  9. Böhm, B., et al.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)

    Article  Google Scholar 

  10. Nauert, A., Dreizler, A.: Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame. Z. Phys. Chem. 219, 635–648 (2005)

    Article  Google Scholar 

  11. Bork, B., et al.: 1D high-speed Rayleigh measurements in turbulent flames. Appl. Phys. B 101, 487–491 (2010)

    Article  Google Scholar 

  12. Böhm, B., et al.: New perspectives on turbulent combustion: multi-parameter high-speed laser diagnostics. Flow Turbul. Combust. 86, 313–341 (2011)

    Article  MATH  Google Scholar 

  13. Böhm, B., et al.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)

    Article  Google Scholar 

Other Publications

  1. Geyer, D., et al.: Finite rate chemistry effects in turbulent opposed flows: comparison of Raman/Rayleigh measurements and Monte Carlo PDF simulation. Proc. Combust. Inst. 30, 711–718 (2005)

    Article  Google Scholar 

  2. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. The MIT Press, Cambridge, MA (1972)

    Google Scholar 

  3. Geyer, D., et al.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)

    Article  Google Scholar 

  4. Böhm, B., et al.: In-Nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul. Combust. 85, 73–93 (2010)

    Article  MATH  Google Scholar 

  5. Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)

    Article  MATH  Google Scholar 

  6. Gregor, M.A., et al.: Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc. Comb. Inst. 32, 1739–1746 (2009)

    Article  Google Scholar 

  7. Heeger, C., et al.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49, 853–864 (2010)

    Article  Google Scholar 

  8. Nauert, A., et al.: Experimental analysis of flash back in lean premixed swirling flames: conditions close to flash back. Exp. Fluids 43, 89–100 (2007)

    Article  Google Scholar 

  9. Borghi, R.: On the structure and morphology of turbulent premixed flames. In: Bruno, C., Casci, C. (eds.) Recent Advances in Aeronautical Science. Pergamon Press, London (1984)

    Google Scholar 

  10. Peters, N.: Turbulent Combustion, p. 304. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  11. Barlow, R.S.: International Workshop on Measurement and Computation of Turbulent Non-premixed Flames (TNF), Sandia National Laboratories (2012)

    Google Scholar 

  12. Gupta, A.K., Lilley, D.G., Syred, N.: Swril Flows. Abacus, Cambridge/Tunbridge Wells (1984)

    Google Scholar 

  13. Escudier, M.P., Keller, J.J.: Recirculation in swirling flows: a manifestation of voretx breakdown. AIAA J. 23, 111–116 (1985)

    Article  Google Scholar 

  14. Freitag, M., et al.: Mixing analysis of a swirling flow using DNS and experimental data. Int. J. Heat Fluid Flow 27, 636–643 (2006)

    Article  Google Scholar 

  15. Ferrao, P., Heitor, M.V.: Simultaneous velocity and scalar measurements in premixed recirculating flames. Exp. Fluids 24, 399–407 (1998)

    Article  Google Scholar 

  16. Geyer, D., et al.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)

    Article  Google Scholar 

  17. Maury, F.A., Libby, P.A.: Nonpremixed flames in stagnating turbulence. Part I–The k-e theory with equilibrium chemistry for the methane-air system. Combust. Flame 102(3), 341–356 (1995)

    Article  Google Scholar 

  18. Eckstein, J., et al.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc. Combust. Inst. 28, 141–148 (2000)

    Article  Google Scholar 

  19. Omar, S.K., et al.: Investigation of flame structures in turbulent partially premixed counter-flow flames using laser-induced fluorescence. Prog. Comput. Fluid Dyn. 4, 241–249 (2004)

    Article  Google Scholar 

  20. Böhm, B., et al.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)

    Article  Google Scholar 

  21. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68(3), 537–566 (1975)

    Article  MATH  Google Scholar 

  22. Chou, C.P., et al.: Modeling of turbulent opposed-jet mixing flows with k-e model and second-order closure. Int. J. Heat Mass Transf. 47(5), 1023–1035 (2004)

    Article  MATH  Google Scholar 

  23. Permana, A.: Turbulent Combustion in Opposed Jet Flows, in Berkeley. University of London, London (2003)

    Google Scholar 

  24. Sung, C.J., Law, C.K., Chen, J.-Y.: An argumented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)

    Google Scholar 

  25. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1998)

    Article  Google Scholar 

  27. Bilger, R.W.: The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475–488 (1988)

    Google Scholar 

  28. Korusoy, E., Whitelaw, J.H.: Extinction and relight in opposed flames. Exp. Fluids 33, 75–89 (2002)

    Google Scholar 

  29. Pitsch, H.: Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29, 1971–1978 (2002)

    Article  Google Scholar 

  30. Bray, K.N.C., Libby, P.A., Moss, J.B.: Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Technol. 41, 143–172 (1984)

    Article  Google Scholar 

  31. Libby, P.A.: Theory of normal premixed turbulent flames revisited. Prog. Energy Combust. Sci. 11, 83–96 (1985)

    Article  Google Scholar 

  32. Butler, T.D., O’Rourke, P.J.: A numerical method for two-dimensional unsteady reacting flows. Proc. Combust. Inst. 16, 1503–1515 (1977)

    Google Scholar 

  33. Kerstein, A.R.: Linear-eddy modeling of turbulent transport, part 6. Microstructure of diffusive scalar mixing fields. J. Fluid Mech. 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  34. Menon, S.: Subgrid combustion modeling for large-eddy simulations. Int. J. Engine Res. 1, 209–227 (2000)

    Article  Google Scholar 

  35. Markstein, G.: Nonsteady Flame Propagation. Pergamon Press, Oxford (1964)

    Google Scholar 

  36. Williams, F.A.: Combustion Theory. Addison-Wesley, Reading (1985)

    Google Scholar 

  37. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  38. Chen, Y.C., et al.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996)

    Article  Google Scholar 

  39. Sardi, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction of turbulent counterflow flames under periodic strain. Combust. Flame 120(3), 265–284 (2000)

    Article  Google Scholar 

  40. Bourguignon, E., et al.: Experimentally measured burning rates of premixed turbulent flames. Proc. Combust. Inst. 26, 447–453 (1996)

    Google Scholar 

  41. Li, S.C., Libby, P.A., Williams, F.A.: Experimental investigation of a premixed flame in an impigning turbulent stream. Proc. Combust. Inst. 25, 1207–1214 (1994)

    Google Scholar 

  42. Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 485–494 (1995)

    Article  Google Scholar 

  43. Plessing, T., et al.: Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359–366 (2000)

    Article  Google Scholar 

  44. Kortschik, C., Plessing, T., Peters, N.: Laser optical investigation of turbulent transport of temperature ahead of the preheat zone in a premixed flame. Combust. Flame 136, 43–50 (2004)

    Article  Google Scholar 

  45. Soika, A., Dinkelacker, F., Leipertz, A.: Measurement of the resolved flame structure of turbulent premixed flames with constant Reynolds number and varied stoichiometry. Proc. Combust. Inst. 27, 785–792 (1998)

    Google Scholar 

  46. Sattler, S., Knaus, D.A., Gouldin, F.C.: Determination of three-dimensional flamelet orientation in turbulent V-flames from two-dimensional image data. Proc. Combust. Inst. 29, 1785–1792 (2002)

    Article  Google Scholar 

  47. Kalt, P.A.M., Frank, J.H., Bilger, R.W.: Laser imaging of conditional velocities in premixed propane-air flames by simultaneous OH PLIF and PIV. Proc. Combust. Inst. 27, 751–758 (1998)

    Google Scholar 

  48. Frank, J.H., Kalt, P.A.M., Bilger, R.W.: Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust. Flame 116(1–2), 220–232 (1999)

    Article  Google Scholar 

  49. Most, D., Dinkelacker, F., Leipertz, A.: Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle imaging velocimetry. Proc. Combust. Inst. 29, 2669–2678 (2002)

    Article  Google Scholar 

  50. Bray, K.N.C.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Topics in Applied Physics, vol. 44, pp. 115–183. Springer, Berlin (1980)

    Google Scholar 

  51. Bray, K.N.C., Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astonautica 4, 291–319 (1977)

    Article  Google Scholar 

  52. Veynante, D., et al.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    MATH  Google Scholar 

  53. Gomez, A., Rosner, D.E.: Thermophoretic effects on particles in counterflow laminar diffusion flames. Combust. Sci. Technol. 89, 335–362 (1993)

    Article  Google Scholar 

  54. Nauert, A., Dreizler, A.: Conditional velocity measurements by simultaneously applied laser Doppler velocimetry and planar laser-induced fluorescence in a swirling natural gas/air flame. Z. Phys. Chem. 219, 635–648 (2005)

    Article  Google Scholar 

  55. Wegner, B., et al.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiment. Heat Fluid Flow 25, 528–536 (2004)

    Article  Google Scholar 

  56. Barlow, R.S., Karpetis, A.N.: Scalar length scales and spatial averaging effects in turbulent piloted methane/air jet flames. Proc. Combust. Inst. 30, 673–680 (2004)

    Article  Google Scholar 

  57. Dally, B.B., et al.: Instantaneous and mean compositional structure of Bluff-Body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)

    Article  Google Scholar 

  58. Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)

    Article  Google Scholar 

  59. Frank, J.H., Kaiser, S.A., Long, M.B.: Polarized/depolarized Rayleigh scattering for determining fuel concentrations in flames. Proc. Combust. Inst. 29, 2687–2694 (2002)

    Article  Google Scholar 

  60. Dibble, R.W., et al.: Conditional sampling of velocity and scalars in turbulent flames using simultaneous LDV-Raman scattering. Exp. Fluids 5, 103–113 (1987)

    Article  Google Scholar 

  61. Goss, L.P., Trump, D.D., Roquemore, W.M.: Combined CARS/LDA instrument for simultaneous temperature; velocity measurements. Exp. Fluids 6, 189–198 (1988)

    Article  Google Scholar 

  62. Donbar, J.M., Driscoll, J.F., Carter, C.D.: Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images. Combust. Flame 122(1–2), 1–19 (2000)

    Article  Google Scholar 

  63. Han, D., Mungal, M.G.: Stabilization in turbulent lifted deflected-jet flames. Proc. Combust. Inst. 29, 1889–1895 (2002)

    Article  Google Scholar 

  64. Bray, K.N.C., Champion, M., Libby, P.A.: Flames in stagnating turbulence. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 573–607. Academic, London (1994)

    Google Scholar 

  65. Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Scalar dissipation rate at the extinction of turbulent counterflow nonpremixed flames. Combust. Flame 91, 55–64 (1992)

    Article  Google Scholar 

  66. Kitajima, A., et al.: Experimental study of extinction and its quantification in laminar and turbulent counterflow CH4-N2/O2-N2 nonpremixed flames. Combust. Flame 137(1–2), 93–108 (2004)

    Article  Google Scholar 

  67. Kalt, P.A.M., Chen, Y.-C., Bilger, R.W.: Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust. Flame 129(4), 401–415 (2002)

    Article  Google Scholar 

  68. Paone, N.: Velocity measurements in turbulent premixed flames: development of a PIV measurement system and comparison with LDV. In Seventh International Symposium on Application of Laser techniques to Fluid Mechanics, Lisbon, Portugal (1994)

    Google Scholar 

  69. Barlow, R.S., et al.: Effect of Damköhler number on super equilibrium OH concentrations in turbulent nonpremixed jet flames. Combust. Flame 82, 235–251 (1990)

    Article  Google Scholar 

  70. Nalm, H.N., et al.: Western States Section/The Combustion Institute, Spring Meeting. Sandia National Laboratories (1997)

    Google Scholar 

  71. Stanislas, M., Okamoto, K., Kähler, C.J., Westerweel, J.: Main results of the second international PIV challenge. Exp. Fluids 39, 170–191 (2005)

    Article  Google Scholar 

  72. Raffel, M., Willert, C., Kompenhans, J.: Particle Imaging Velocimetry: A Practical Guide. Springer, Berlin (1998)

    Google Scholar 

  73. Cowen, E.A., Monismith, S.G.: A hybrid digital particle tracking velocimetry technique. Exp. Fluids 22, 199–211 (1997)

    Article  Google Scholar 

  74. Muniz, L., Martinez, R.E., Mungal, M.G.: Application of PIV to turbulent reacting flows. In Eighth International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (1996)

    Google Scholar 

  75. Sung, C.J., Law, C.K., Axelbaum, R.L.: Thermophoretic effects on seeding particles in LDV measurements of flames. Combust. Sci. Technol. 99, 119–132 (1994)

    Article  Google Scholar 

  76. Rehm, J.E., Clemens, N.T.: Local extinction in an unsteady methane-air jet diffusion flame. Proc. Combust. Inst. 27, 1113–1120 (1998)

    Google Scholar 

  77. Kaminski, C.F., Long, M.B.: Multi-dimensional diagnostics in space and time. In: Kohse-Höinghaus, K., Jeffries, J.B. (eds.) Diagnostic Challenges for Gas Turbine Combustor Model Validation, pp. 224–251. Taylor & Francis, New York (2002)

    Google Scholar 

  78. Jiang, N.B., Webster, M.C., Lempert, W.R.: Advances in generation of high-repetition-rate burst mode laser output. Appl. Opt. 48, B23–B31 (2009)

    Article  Google Scholar 

  79. Wang, G.H., Clemens, N.T., Varghese, P.L.: Two-point, high-repetition rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl. Opt. 44, 6741–6751 (2005)

    Article  Google Scholar 

  80. Bork, B., et al.: 1D high-speed Rayleigh measurements in turbulent flames. Appl. Phys. B 101, 487–491 (2010)

    Article  Google Scholar 

  81. Upatnieks, A., Driscoll, J.F., Ceccio, S.L.: Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst. 29, 1897–1903 (2002)

    Article  Google Scholar 

  82. Kaminski, C.F., Hult, J., Aldén, M.: High repetition rate planar laser-induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B 68, 757–760 (1999)

    Article  Google Scholar 

  83. Li, D., et al.: Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 32, 1272–1274 (2007)

    Article  Google Scholar 

  84. Fajardo, C.M., Sick, V.: Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser. Appl. Phys. B 85, 25–31 (2006)

    Article  Google Scholar 

  85. Ahmed, S.F., Balachandran, R., Mastorakos, E.: Measurement of ignition probability in turbulent non-premixed counterflow flames. Proc. Combust. Inst. 31, 1507–1513 (2007)

    Article  Google Scholar 

  86. Böhm, B., et al.: New perspectives on turbulent combustion: multi-parameter high-speed laser diagnostics. Flow Turbul. Combust. 86, 313–341 (2011)

    Article  MATH  Google Scholar 

  87. Winkler, A., Wäsle, J., Sattelmayer, T.: Laserinduzierte Fluoreszenz in Echtzeit zur Bestimmung des Flammenlärms. Fachtagung “Lasermethoden in der Strömungsmesstechnik” 12, 18-1–18-8 (2004)

    Google Scholar 

  88. Adrian, R.J., Christensen, K.T., Liu, Z.-C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)

    Article  Google Scholar 

  89. Böhm, B., et al.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)

    Article  Google Scholar 

  90. Lemaire, A., et al.: PIV/PLIF investigation of two-phase vortex-flame interactions: effects of vortex size and strength. Exp. Fluids 36, 36–42 (2004)

    Article  Google Scholar 

  91. Katta, V.R., et al.: Insights into non-adiabatic equilibrium flame temperatures during millimeter-size vortex/flame interactions. Combust. Flame 132, 639–651 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of Deutsche Forschungsgemeinschaft through SFB 568 Projects B1 and B3 and TU Darmstadt is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dreizler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Böhm, B. et al. (2013). Advanced Laser Diagnostics for Understanding Turbulent Combustion and Model Validation. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics