Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

Infectious diseases are the result of competitive relationships between a host organism and a pathogen. In host vertebrate–microbe interactions, the acquisition of iron for the essential metabolism of pathogenic organisms and the need of the host to bind and sequestrate the metal are central issues. Plants are also confronted with a wide variety of pathogenic microorganisms that can be highly devastating and compromise crop production. Investigated in a few cases in the past, the mechanisms involved in exchanging and withholding iron during plant–microbe interactions are becoming an emerging topic. This chapter surveys the wealth of information illustrating the role of iron acquisition, toxicity, and homeostasis in relevant pathosystem models of agricultural importance. There is now evidence that phytopathogenic bacteria and fungi can use siderophores and other iron uptake systems to multiply in the host and to promote infection. Moreover, plant can develop an iron-withholding response that changes iron distribution and trafficking during infection. Elucidating the mechanisms of competition for iron between plants and pathogens must help to develop innovative strategies for controlling diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attard A, Gourgues M, Galiana E, Panabières F, Ponchet M, Keller H (2008) Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophtora parasitica Dastur (Syn. P. Nicotianae Breda de Haan). J Plant Physiol 165:83–94

    CAS  Google Scholar 

  • Barash I, Zion R, Krikun J, Nachmias A (1988) Effect of iron status on Verticillium wilt disease and on in vitro production of siderophores by Verticillium dahliae. J Plant Nutr 11:893–905

    CAS  Google Scholar 

  • Barnes HH, Ishimaru CA (1999) Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora. Biometals 12:83–87

    CAS  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604

    CAS  Google Scholar 

  • Bhatt G, Denny TP (2004) Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. J Bacteriol 186:7896–7904

    CAS  Google Scholar 

  • Birch LE, Ruddat M (2005) Siderophore accumulation and phytopathogenicity in Microbotryum violaceum. Fungal Gent Biol 42:579–589

    CAS  Google Scholar 

  • Bölker M (2001) Ustilago maydis, a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401

    Google Scholar 

  • Bolwell GP, Daudi A (2009) Reactive Oxygen species in plant signaling. In: del Rio LA, Puppo A (eds) Signaling and Communication in Plants. Springer, Berlin, pp 113–133

    Google Scholar 

  • Boughammoura A, Expert D, Franza T (2012) Role of the Dickeya dadantii Dps protein. Biometals 25:423–433

    CAS  Google Scholar 

  • Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, Expert D, Franza T (2008) Differential role of ferritins in iron metabolism and virulence of the plant pathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol 190:1518–1530

    CAS  Google Scholar 

  • Briat JF, Duc C, Ravet K, Gaymard F (2010) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814

    CAS  Google Scholar 

  • Bultreys A, Gheysen I, de Hoffmann E (2006) Yersiniabactin production by Pseudomonas syringae and Escherichia coli and description of a second yersiniabactin locus evolutionary group. App Environ Microbiol 92:3814–3825

    Google Scholar 

  • Butcher BG, Bronstein PA, Myers CR, Stodghill PV, Bolton JJ, Markel E, Filiatrault MJ, Swingle B, Gaballa A, Helmann JD, Schneider DJ, Cartinhour S (2011) Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 193:4598–4611

    CAS  Google Scholar 

  • Caracuel-Rios Z, Talbot NJ (2007) Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 10:339–345

    CAS  Google Scholar 

  • Cha JY, Lee JS, Oh JI, Choi JW, Baik HS (2008) Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing. Biochem Biophys Res Commun 366:281–287

    CAS  Google Scholar 

  • Chatterjee S, Sonti RV (2002) rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant Microbe Interact 15:463–471

    CAS  Google Scholar 

  • Chatterjee S, Almeida RPP, Lindow S (2008) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271

    CAS  Google Scholar 

  • Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochem Biophys Acta 1800:798–805

    CAS  Google Scholar 

  • Cody YS, Gross DC (1987) Characterization of pyoverdinpss, the fluorescent siderophore produced by Pseudomonas syringae pv. syringae. App Environ Microbiol 53:928–934

    CAS  Google Scholar 

  • Colburn-Clifford JM, Scherf JM, Allen C (2010) Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. App Environ Microbiol 76:7392–7399

    CAS  Google Scholar 

  • Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria: molecular genetics, biochemistry, microbial pathogenesis and ecology. American Society of Microbiology (ASM) Press Book, Washington

    Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    CAS  Google Scholar 

  • Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013

    Google Scholar 

  • Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kirali Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerantto oxidative damage and pathogens. Nat Biotechnol 17:192–196

    CAS  Google Scholar 

  • Degrave A, Fagard M, Perino C, Brisset MN, Gaubert S, Laroche S, Patrit O, Barny MA (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1076–1086

    CAS  Google Scholar 

  • Dellagi A, Brisset MN, Paulin J-P, Expert D (1998) Dual role of desferrioxamine in Erwinia amylovora pathogenicity. Mol Plant Microbe Interact 8:734–742

    Google Scholar 

  • Dellagi A, Reis D, Vian B, Expert D (1999) Expression of the ferrioxamine receptor gene of Erwinia amylovora CFBP 1430 during pathogenesis. Mol Plant Microbe Interact 12:463–466

    CAS  Google Scholar 

  • Dellagi A, Rigault M, Segond D, Roux C, Kraepiel Y, Cellier F, Briat JF, Gaymard F, Expert D (2005) Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. Plant J 43:262–272

    CAS  Google Scholar 

  • Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D (2009) Microbial siderophores exert a subtle role on Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol 150:1687–1696

    CAS  Google Scholar 

  • Eatsgate JA (2000) Erwinia amylovora, the molecular basis of fireblight disease. Mol Plant Pathol 1:325–332

    Google Scholar 

  • Eichhorn H, Lessing F, Winterberg B, Schirawski J, Kämper J, Müller P, Kahmann R (2006) A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis. Plant Cell 18:3332–3345

    CAS  Google Scholar 

  • Enard C, Diolez A, Expert D (1988) Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system. J Bacteriol 170:2419–2426

    CAS  Google Scholar 

  • Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri:identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159:425–437

    CAS  Google Scholar 

  • Expert D, Boughammoura A, Franza T (2008) Siderophore controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. J Biol Chem 283:36564–36572

    CAS  Google Scholar 

  • Expert D, Rauscher L, Franza T (2004) Erwinia, a plant pathogen. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria: molecular genetics, biochemistry, microbial pathogenesis and ecology. American Society of Microbiology (ASM) Press Book, Washington, pp 402–412

    Google Scholar 

  • Expert D, Toussaint A (1985) Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol 163:221–227

    CAS  Google Scholar 

  • Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik V, Expert D (2007) Arabidopsis thaliana expresses multiple lines of defense to counter-attack Erwinia chrysanthemi. Mol Plant Microbe Interact 20:794–805

    CAS  Google Scholar 

  • Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci 102:11064–11069

    CAS  Google Scholar 

  • Feistner GJ, Stahl DC, Gabrik AH (1993) Proferrioxamine siderophores of Erwinia amylovora. A capillary liquid chromatographic/electrospray tandem mass spectrometry study. Org Mass Spectrom 28:163–175

    CAS  Google Scholar 

  • Franza T, Expert D (1991) The virulence-associated chysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions. J Bacteriol 173:6874–6881

    CAS  Google Scholar 

  • Franza T, Expert D (2010) Iron uptake in soft rot Erwinia. In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norwich, pp 101–115

    Google Scholar 

  • Franza T, Mahé B, Expert D (2005) Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55:261–275

    CAS  Google Scholar 

  • Franza T, Michaud-Soret I, Piquerel P, Expert D (2002) Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937. Mol Plant Microbe Interact 15:1181–1191

    CAS  Google Scholar 

  • Franza T, Sauvage C, Expert D (1999) Iron regulation and pathogenicity in Erwinia chrysanthemi strain 3937: Role of the Fur repressor protein. Mol Plant-Microbe Interact 12:119–129

    CAS  Google Scholar 

  • Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928

    Google Scholar 

  • Greenwald JW, Greenwald CJ, Philmus BJ, Begley TP, Gross DC. (2012) RNA-seq analysis reveals that an ECF σ Factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a. PLoS One 7(4):e34804 (Epub 2012 Apr 18)

    Google Scholar 

  • Gross DC (1985) Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J Appl Bacteriol 58:167–174

    CAS  Google Scholar 

  • Guerra D, Andreson AJ (1985) The effect of iron and boron amendments on infection of bean by Fusarium solani. Phytopathology 75:989–991

    CAS  Google Scholar 

  • Hernandez-Morales A, De la Torre-Zavala S, Ibarra-Laclette E, Hernandez-Flores JL, Jofre- Garfias AE, Martinez-Antonio A, Alvarez-Morales A (2009) Transcriptional profile of Pseudomonas syringae pv. phaseolicola NPS3121 in response to tissue extracts from a susceptible Phaseolus vulgaris L. cultivar. BMC Microbiol 9:257

    Google Scholar 

  • Hibbing ME, Fuqua C (2011) Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens. J Bacteriol 193:3461–3472

    CAS  Google Scholar 

  • Hof C, Eisfeld K, Welzel K, Antelo L, Foster AJ, Anke H (2007) Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. Mol Plant Pathol 8:163–172

    CAS  Google Scholar 

  • Jittawuttipoka T, Sallabhan R, Vattanaviboon P, Fuangthong M, Mongkolsuk S (2010) Mutations of ferric uptake regulator (fur) impair iron homeostasis, growth, oxidative stress survival, and virulence of Xanthomonas campestris pv. campestris. Arch Microbiol 192:331–339

    CAS  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786

    CAS  Google Scholar 

  • Jones AM, Wildermuth MC (2011) The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J Bacteriol 193:2767–2775

    CAS  Google Scholar 

  • Kachadourian R, Dellagi A, Laurent J, Bricard L, Kunesch G, Expert D (1996) Desferrioxaminedependent- iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR. Biometals 9:143–150

    CAS  Google Scholar 

  • Kieu NP, Aznar A, Segond D, Rigault M, Simond-Cote E, Kunz C, Soulie M-C, Expert D, Dellagi A (2012) Iron deficiency affects plant defense responses and confers resistance to Dickeya dadantii and Botrytis cinerea. Mol Plant Pathol (in press)

    Google Scholar 

  • Kim BJ, Park JH, Bronstein PA, Schneider DJ, Catinhour SW, Schuler ML (2009) Effect of iron concentration on the growth rate of Pseudomonas syringae and the expression of virulence factors in hrp-inducing minimal medium. App Environ Microbiol 75:2720–2726

    CAS  Google Scholar 

  • Kim BJ, Schneider DJ, Catinhour SW, Shuler ML (2010) Complex responses to culture conditions in Pseudomonas syringae pv. tomato DC3000 continuous cultures: the role of iron in cell growth and virulence factor induction. Biotechnol Bioeng 105:955–964

    CAS  Google Scholar 

  • Kitphati W, Ngok-Ngam P, Suwanmaneerat S, Sukchawalit R, Mongkolsuk S (2007) Agrobacterium tumefaciens fur has important physiological roles in iron and manganese homeostasis, the oxidative stress response, and full virulence. Appl Environ Microbiol 73:4760–4768

    CAS  Google Scholar 

  • Kreutzer MF, Kage H, Gebhardt P, Wackler BW, Saluz HP, Hoffmeister D, Nett M (2011) Biosynthesis of a complex yersiniabactin-like natural product via the mic locus in phytopathogen Ralstonia solanacearum. App Environ Microbiol 77:6117–6124

    CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  Google Scholar 

  • Lee BN, Kroken S, Chou DYT, Robbertse B, Yoder OC, Turgeon BG (2005) Functional analysis of all non ribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor NPS6, involved in virulence and resistance to oxidative stress. Eucaryotic Cell 4:545–555

    CAS  Google Scholar 

  • Leong SA, Neilands JB (1981) Relationship of siderophore-mediated iron assimilation to virulence in crown gall disease. J Bacteriol 147:482–491

    CAS  Google Scholar 

  • Liu G, Greenshields DL, Sammynaiken R, Hirji RN, Selvaraj G, Wei Y (2007) Targeted alterations in iron homeostasis underlie plant defense responses. J Cell Sci 120:596–605

    CAS  Google Scholar 

  • Loprasert S, Sallabhan R, Atichartpongkul S, Mongkolsuk S (1999) Characterization of a ferric uptake regulator (fur) gene from Xanthomonas campestris pv. phaseoli with unusual primary structure, genome organization, and expression patterns. Gene 239:251–258

    CAS  Google Scholar 

  • Mahé B, Masclaux C, Rauscher L, Enard C, Expert D (1995) Differential expression of two siderophore dependent iron acquisition pathways in Erwinia chrysanthemi 3937: characterization of a novel ferrrisiderophore permease of the ABC transporter family. Mol Microbiol 18:33–43

    Google Scholar 

  • Markel E, Maciak C, Butcher BG, Myers CR, Stodghill P, Bao Z, Cartinhour S, Swingle B (2011) An extracytoplasmic function sigma factor-mediated cell surface signalling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. J Bacteriol 193:5775–5783

    CAS  Google Scholar 

  • Mata CG, Lamattina L, Cassia RO (2001) Involvement of iron and ferritin in the potato: Phytophtora infestans interaction. Eur J Plant Pathol 107:557–562

    CAS  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) Sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907

    CAS  Google Scholar 

  • Meyer JM, Gruffaz C, Tulkki T, Izard D (2008) Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int J Syst Evol Microbiol 57:2543–2556

    Google Scholar 

  • Mila I, Scalbert A, Expert D (1996) Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochemistry 42:1551–1555

    CAS  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    CAS  Google Scholar 

  • Münzinger M, Budzikiewicz H, Expert D, Enard C, Meyer JM (2000) Achromobactin, a new citrate siderophore of Erwinia chrysanthemi. Z Naturforsch (C) 55:328–332

    Google Scholar 

  • Murdoch L, Corbel JC, Reis D, Bertheau Y, Vian B (1999) Differential cell wall degradation by Erwinia chrysanthemi in petiole of Saintpaulia ionantha. Protoplasma 210:59–74

    Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Suoave C (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55

    CAS  Google Scholar 

  • Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase. Mol Microbiol 39:960–972

    CAS  Google Scholar 

  • Neema C, Laulhere JP, Expert D (1993) Iron deficiency induced by chrysobactin in Saintpaulia leaves inoculated with Erwinia chrysanthemi. Plant Physiol 102:967–973

    CAS  Google Scholar 

  • Neves JV, Wilson JM, Kuhl H, Reinhardt R, Castro LF, Rodrigues PN (2011) Natural history of SLC11 genes in vertebrates: tales from the fish world. BMC Evol Biol 11:106

    CAS  Google Scholar 

  • Ngok-Ngam P, Ruangkiattikul N, Mahavihakanont A, Virgem SS, Sukchawalit R, Mongkolsuk S (2009) Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol 191:2083–2090

    CAS  Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16:395–404

    CAS  Google Scholar 

  • O’Brian MR, Fabiano E (2010) Mechanisms and regulation of iron homeostasis in the Rhizobia. In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk, pp 37–63

    Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 10:2836–2853

    Google Scholar 

  • Okinaka Y, Yang CH, Perna NT, Keen NT (2002) Microarray profiling of Erwinia chrysanthemi 3937 genes that are regulated during plant infection. Mol Plant Microbe Interact 15:619–629

    CAS  Google Scholar 

  • Ong SA, Peterson T, Neilands JB (1979) Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem 254:1860–1865

    CAS  Google Scholar 

  • Owen JG, Ackerley DF (2011) Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a. BMC Microbiol 11:218

    CAS  Google Scholar 

  • Pandey A, Sonti RV (2010) Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J Bacteriol 192:3187–3203

    CAS  Google Scholar 

  • Perry RD, Fetherston JD (2011) Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect 13:808–817

    CAS  Google Scholar 

  • Persmark M, Expert D, Neilands JB (1989) Isolation, characterization and synthesis of chrysobactin, a compoundwith a siderophore activity from Erwinia chrysanthemi. J Biol Chem 264:3187–3193

    CAS  Google Scholar 

  • Pitzchke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J 29:1021–1032

    Google Scholar 

  • Rauscher L, Expert D, Matzanke BF, Trautwein AX (2002) Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi: functional study of an homologue of the Escherichia coli ferric enterobactin esterase. J Biol Chem 277:2385–2395

    CAS  Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150:3857–3866

    Google Scholar 

  • Ryan RP, Vorhölter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9:344–355

    CAS  Google Scholar 

  • Sandy M, Butler A (2011) Chrysobactin siderophores produced by Dickeya chrysanthemi EC16. J Nat Prod 74:1207–1212

    CAS  Google Scholar 

  • Santos R, Franza T, Laporte ML, Sauvage C, Touati D, Expert D (2001) Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. Mol Plant-Microbe Interact 14:758–757

    CAS  Google Scholar 

  • Schmelz S, Botting CH, Song L, Kadi N, Challis GL, Naismith JH (2011) Structural basis for acyl acceptor specificity in the achromobactin biosynthetic enzyme AcsD. J Mol Biol 412:495–504

    CAS  Google Scholar 

  • Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH, White MF, Challis GL, Naismith JH (2008) AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nature Chem Biol 5:174–182

    Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    CAS  Google Scholar 

  • Segond D, Dellagi A, Lanquar V, Rigault M, Patrit O, Thomine S, Expert D (2009) NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Plant J 58:195–207

    CAS  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    CAS  Google Scholar 

  • Smits TH, Duffy B (2011) Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol 193:693–639

    CAS  Google Scholar 

  • Sonoda H, Suzuki K, Yoshida K (2002) Gene cluster for ferric uptake in Agrobacterium tumefaciens MAFF301001. Genes Genet Syst 77:137–146

    CAS  Google Scholar 

  • Subramoni S, Sonti RV (2005) Growth deficiency of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is rescued by ascorbic acid supplementation. Mol Plant-Microbe Interact 18:644–651

    CAS  Google Scholar 

  • Swingle B, Thete D, Moll M, Myers CR, Schneider DJ, Cartinhour S (2008) Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Mol Microbiol 68:871–889

    CAS  Google Scholar 

  • Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126

    CAS  Google Scholar 

  • Tomisić V, Blanc S, Elhabiri M, Expert D, Albrecht-Gary AM (2008) Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi. Inorg Chem 47:9419–9430

    Google Scholar 

  • Turgeon BG, Baker SC (2007) Genetic and genomic dissection of Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet 57:219–261

    CAS  Google Scholar 

  • Visca P, Leoni L, Wilson MJ, Lamont IL (2002) Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45:1177–1790

    CAS  Google Scholar 

  • Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H (2010) Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 76:2704–2011

    CAS  Google Scholar 

  • Wiggerich H-G, Pühler A (2000) The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper. Microbiology 146:1053–1060

    CAS  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    CAS  Google Scholar 

  • Yang S, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT, Yang CH (2004) Genome-wide identification of plant upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant Microbe Interact 17:999–1008

    CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citarte transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    CAS  Google Scholar 

  • Zaini PA, Fogaça AC, Lupo FGN, Nakaya HI, vencio RZN, da Silva AM (2008) The iron stimulon of Xylella fastidiosa includes genes for Type IV pilus and colicin V-like bacteriocins. J Bacteriol 190:2368–2378

    CAS  Google Scholar 

  • Zhao Y, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    CAS  Google Scholar 

Download references

Acknowledgments

Research from the authors’ laboratory was supported by grants from the INRA and the Université Pierre et Marie Curie (Paris)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Expert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Expert, D., Franza, T., Dellagi, A. (2012). Iron in Plant–Pathogen Interactions. In: Expert, D., O'Brian, M. (eds) Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5267-2_2

Download citation

Publish with us

Policies and ethics