Skip to main content

Towards a Greater Accuracy in DFT Calculations: From GGA to Hybrid Functionals

  • Chapter
Quantum Simulations of Materials and Biological Systems

Abstract

The accuracy of a DFT calculation depends in a crucial way on the choice of the exchange-correlation functional, for which a variety of approximations are available. Local functionals, or functionals belonging to the generalized-gradient approximation (GGA) or meta-GGA classes are the simplest ones and the most computationally efficient. Furthermore, they give sufficiently accurate results for many applications. Nevertheless, for a number of purposes, an increased accuracy is required, which can only be obtained by means of hybrid functionals. Hybrid functionals are derived by mixing a GGA (or local, or meta-GGA) functional with the Hartree-Fock exchange. Two different families of hybrid functionals exist: the so-called global hybrids and the range separated hybrids. Quite recently, hybrids combining the main features of the functionals belonging to both families have been proposed and tested. We have constructed new hybrid functionals based on some recently proposed local and GGA functionals. Global hybrids, range-separated hybrids, as well as global hybrids with range separation will be presented and their performances discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Google Scholar 

  3. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  4. Perdew JP, Zunger A (1981) Phys Rev 23:5048

    Article  CAS  Google Scholar 

  5. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  6. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  7. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  8. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  9. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  10. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  11. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  12. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  13. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  14. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  15. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  16. Heyd J, Scuseria GE (2004) J Chem Phys 120:7274

    Article  CAS  Google Scholar 

  17. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106

    Article  Google Scholar 

  18. Ragot S, Cortona P (2004) J Chem Phys 121:7671

    Article  CAS  Google Scholar 

  19. Tognetti V, Cortona P, Adamo C (2008) J Chem Phys 128:034101

    Article  Google Scholar 

  20. Tognetti V, Cortona P, Adamo C (2008) Chem Phys Lett 460:536

    Article  CAS  Google Scholar 

  21. Hermet J, Cortona P, Adamo C (2012) Chem Phys Lett 519–520:145

    Article  Google Scholar 

  22. Wang Y, Perdew JP (1991) Phys Rev B 43:8911

    Article  Google Scholar 

  23. Tognetti V, Cortona P, Adamo C (2007) Chem Phys Lett 439:381

    Article  CAS  Google Scholar 

  24. Tognetti V, Adamo C, Cortona P (2007) Chem Phys 337:161

    Article  CAS  Google Scholar 

  25. Tognetti V, Cortona P, Adamo C (2009) Theor Chem Acc 122:257

    Article  CAS  Google Scholar 

  26. Tognetti V, Joubert L, Cortona P, Adamo C (2009) J Phys Chem A 113:12322

    Article  CAS  Google Scholar 

  27. Tognetti V, Cortona P, Adamo C (2009) AIP Conf Proc 1102:147

    Article  CAS  Google Scholar 

  28. Tognetti V, Cortona P, Adamo C (2010) Int J Quant Chem 110:2320

    Article  CAS  Google Scholar 

  29. Tognetti V, Adamo C, Cortona P (2010) Interdiscip Sci Comput Life Sci 2:163

    Article  Google Scholar 

  30. Lieb EH, Oxford S (1981) Int J Quant Chem 19:427

    Article  CAS  Google Scholar 

  31. Zhang Y, Yang W (1998) Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  32. Chan K-I, Handy NC (1999) Phys Rev A 59:3075

    Article  Google Scholar 

  33. Frisch MJ et al. (2007) Gaussian development version, revision G01. Gaussian, Inc, Wallingford

    Google Scholar 

  34. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    Article  CAS  Google Scholar 

  35. Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808

    Article  CAS  Google Scholar 

  36. Zheng J, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656

    Article  CAS  Google Scholar 

  39. Brémond E, Pilard D, Ciofini I, Chermette H, Adamo C, Cortona P (2012) Theor Chem Acc 131:1184

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Agence Nationale de la Recherche under the project Dinf DFT ANR BLANC n. 0425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Cortona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hermet, J., Adamo, C., Cortona, P. (2012). Towards a Greater Accuracy in DFT Calculations: From GGA to Hybrid Functionals. In: Zeng, J., Zhang, RQ., Treutlein, H. (eds) Quantum Simulations of Materials and Biological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4948-1_1

Download citation

Publish with us

Policies and ethics