Skip to main content

Molecular Identification of Traditional Medicinal Materials

  • Chapter
  • First Online:
Molecular Pharmacognosy

Abstract

Traditional medicines are consumed by 80% of the population in the world for health maintenance and disease treatment. Adulteration and substitution of the source materials have been life-threatening problems growing along with their popularity. Consequently, a reliable identification method is important for safety and quality assurance of the traditional medicinal materials. Molecular techniques provide alternative means to conventional organoleptic and chemical authentication methods and are often more superior in accuracy, sensitivity, resolution and reproducibility. Since the early 1990s, a number of molecular techniques have been developed to identify traditional medicinal materials based on DNA fingerprinting (RFLP, AP-PCR, RAPD, AFLP, DALP, ISSR, PCR-RFLP, SCAR and isothermal amplification), DNA microarray and DNA sequencing (DNA barcoding and FINS). These techniques are capable of differentiating traditional medicinal materials and their adulterants and substitutes, and in some cases, distinguishing closely related species, subspecies, varieties, cultivars and species from different localities. This chapter introduces the major molecular identification techniques and reviews their applications in the identification of animal and botanical medicinal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. (2008). Traditional medicine. http://www.who.int/mediacentre/factsheets/fs134/en/. Dec 2008.

  2. Vanherweghem, J., Tielemans, C., Abramowicz, D., et al. (1993). Rapidly progressive interstitial renal fibrosis in young women: Association with slimming regimen including Chinese herbs. Lancet, 341, 387–391.

    Article  PubMed  CAS  Google Scholar 

  3. Vanhaelen, M., Vanhaelen-Fastre, R., But, P. P. H., et al. (1994). Identification of aristolochic acid in Chinese herbs. Lancet, 343, 174.

    Article  PubMed  CAS  Google Scholar 

  4. But, P. P. H. (1994). Herbal poisoning caused by adulterants or erroneous substitutes. The Journal of Tropical Medicine and Hygiene, 97, 371–374.

    PubMed  CAS  Google Scholar 

  5. Lee, S., Lee, T., Lee, B., et al. (2004). Fanconi’s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton, Vic.), 9, 126–129.

    Article  Google Scholar 

  6. Lo, S. H., Wong, K. S., Arlt, V. M., et al. (2005). Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. American Journal of Kidney Diseases, 45, 407–410.

    Article  PubMed  Google Scholar 

  7. Debelle, F. D., Vanherweghem, J. L., & Nortier, J. L. (2008). Aristolochic acid nephropathy: A worldwide problem. Kidney International, 74, 158–169.

    Article  PubMed  CAS  Google Scholar 

  8. Jha, V. (2010). Herbal medicines and chronic kidney disease. Nephrology (Carlton, Vic.), 15(Suppl 2), 10–17.

    Article  Google Scholar 

  9. But, P. P. H., Tomlinson, B., Cheung, K. O., et al. (1996). Adulterants of herbal products can cause poisoning. British Medical Journal, 313, 117.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, Y. P. (2000). Toxicity of the Chinese herb mu tong (Aristolochia manshuriensis): What history tells us. Adverse Drug Reactions and Toxicological Reviews, 21, 171–177.

    Google Scholar 

  11. Zeng, Z. P., & Jiang, J. G. (2010). Analysis of the adverse reactions induced by natural product-derived drugs. British Journal of Pharmacology, 159, 1374–1391.

    Article  PubMed  CAS  Google Scholar 

  12. CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794–12797.

    Article  Google Scholar 

  13. Chen, S., Yao, H., Han, J., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One, 5, e8613.

    Article  PubMed  Google Scholar 

  14. Hebert, P. D., Cywinska, A., Ball, S. L., et al. (2003). Biological identifications through DNA barcodes. Proceeding of the Royal Society B Biological Sciences, 270, 313–321.

    Article  CAS  Google Scholar 

  15. Kress, W. J., Wurdack, K. J., Zimmer, E. A., et al. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 8369–8374.

    Article  PubMed  CAS  Google Scholar 

  16. Shaw, P. C., Jiang, R. W., & Wong, K. L. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.

    Google Scholar 

  17. Shaw, P. C., Ngan, F. N., & But, P. P. H. (2002). Molecular markers in Chinese medicinal materials. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.

    Google Scholar 

  18. Cheung, K. S., Kwan, H. S., But, P. P. H., et al. (1994). Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). Journal of Ethnopharmacology, 42, 67–69.

    Article  PubMed  CAS  Google Scholar 

  19. Shaw, P. C., & But, P. P. H. (1995). Authentication of Panaxspecies and their adulterants by random-primed polymerase chain reaction. Planta Medica, 61, 466–469.

    Article  PubMed  CAS  Google Scholar 

  20. Li, M., Ling, K. H., Lam, H., et al. (2010). Cardiocrinumseeds as a replacement for Aristolochiafruits in treating cough. Journal of Ethnopharmacology, 130, 429–432.

    Article  PubMed  Google Scholar 

  21. Sasaki, Y., Komatsu, K., & Nagumo, S. (2008). Rapid detection of Panax ginsengby loop-mediated isothermal amplification and its application to authentication of ginseng. Biological and Pharmaceutical Bulletin, 31, 1806–1808.

    Article  PubMed  CAS  Google Scholar 

  22. Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  23. Cao, H., But, P. P. H., & Shaw, P. C. (1996). Authentication of the Chinese drug ‘Ku-Di-Dan’ (Herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharmaceutica Sinica, 31, 543–553.

    PubMed  CAS  Google Scholar 

  24. Cao, H., But, P. P. H., & Shaw, P. C. (1996). A molecular approach to identification of the Chinese drug ‘pu gong ying’ (herba taraxaci) and six adulterants by DNA fingerprinting using random primed polymerase chain reaction (PCR). Journal of Chinene Pharmaceutical Sciences, 5, 186–194.

    CAS  Google Scholar 

  25. Zhang, Y. B., Ngan, F. N., Wang, Z. T., et al. (1999). Random primed polymerase chain reaction differentiates Codonopsis pilosulafrom different localities. Planta Medica, 65, 157–160.

    Article  PubMed  Google Scholar 

  26. Williams, J. G., Kubelik, A. R., Livak, K. J., et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  PubMed  CAS  Google Scholar 

  27. Fu, R. Z., Shaw, P. C., Wang, J., et al. (2000). RAPD differentiation of five medicinal Dysosmaspecies. Journal of Chinese Pharmaceutical Sciences, 9, 57–60.

    CAS  Google Scholar 

  28. Chatti, K., Baraket, G., Ben Abdelkrim, A., et al. (2010). Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochemical Genetics, 48, 789–806.

    Article  PubMed  CAS  Google Scholar 

  29. Li, Y., & Ding, W. L. (2010). Genetic diversity assessment of Trolliusaccessions in China by RAPD markers. Biochemical Genetics, 48, 34–43.

    Article  PubMed  CAS  Google Scholar 

  30. Lim, W., Mudge, K. W., & Weston, L. A. (2007). Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolius). Planta Medica, 73, 71–76.

    Article  PubMed  CAS  Google Scholar 

  31. Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  32. Ruselll, J. R., Fuller, J. D., Macaulay, M., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.

    Article  Google Scholar 

  33. Ha, W. Y., Yau, F. C. F., Shaw, P. C., et al. (2002). Differentiation of Panax ginsengfrom P. quinquefoliusby amplified fragment length polymorphism. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.

    Google Scholar 

  34. Ha, W. Y., Shaw, P. C., Liu, J., et al. (2002). Authentication of Panax ginsengand Panax quinquefoliususing amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). Journal of Agricultural and Food Chemistry, 50, 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  35. Choi, Y. E., Ahn, C. H., Kim, B. B., et al. (2008). Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicusC. A. Meyer. Biological and Pharmaceutical Bulletin, 31, 135–138.

    Article  PubMed  Google Scholar 

  36. Datwyler, S. L., & Weiblen, G. D. (2006). Genetic variation in hemp and marijuana (Cannabis sativaL.) according to amplified fragment length polymorphisms. Journal of Forensic Sciences, 51, 371–375.

    Article  PubMed  CAS  Google Scholar 

  37. Passinho-Soares, H., Felix, D., Kaplan, M. A., et al. (2006). Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: inferences from the Plectranthusgenus. Planta Medica, 72, 929–931.

    Article  PubMed  CAS  Google Scholar 

  38. Ha, W. Y., Yau, F. C., But, P. P. H., et al. (2001). Direct amplification of length polymorphism analysis differentiates Panax ginsengfrom P. quinquefolius. Planta Medica, 67, 587–589.

    Article  PubMed  CAS  Google Scholar 

  39. Godwin, I. D., Aitken, E. A., & Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18, 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  40. Su, C., Wong, K. L., But, P. P. H., et al. (2010). Molecular authentication of the Chinese Herb Huajuhong and related medicinal material by DNA sequencing and ISSR marker. Journal of Food and Drug Analysis, 18, 161–170.

    CAS  Google Scholar 

  41. Kojoma, M., Iida, O., Makino, Y., et al. (2002). DNA fingerprinting of Cannabis sativausing inter-simple sequence repeat (ISSR) amplification. Planta Medica, 68, 60–63.

    Article  PubMed  CAS  Google Scholar 

  42. Shi, H. M., Wang, J., & Wang, M. Y. (2009). Identification of Cistanchespecies by chemical and inter-simple sequence repeat fingerprinting. Biological and Pharmaceutical Bulletin, 32, 142–146.

    Article  PubMed  CAS  Google Scholar 

  43. Hu, Y., Zhang, Q., Xin, H., et al. (2007). Association between chemical and genetic variation of Vitex rotundifoliapopulations from different locations in China: Its implication for quality control of medicinal plants. Biomedical Chromatography, 21, 967–975.

    Article  PubMed  CAS  Google Scholar 

  44. Song, Z., Li, X., Wang, H., et al. (2010). Genetic diversity and population structure of Salvia miltiorrhizaBge in China revealed by ISSR and SRAP. Genetica, 138, 241–249.

    Article  PubMed  CAS  Google Scholar 

  45. Ngan, F. G., Shaw, P. C., But, P. P. H., et al. (1999). Molecular authentication of Panaxspecies. Phytochemistry, 50, 787–791.

    Article  PubMed  CAS  Google Scholar 

  46. Fu, R. Z., Wang, J., Zhang, Y. B., et al. (1999). Differentiation of medicinal Codonopsisspecies from adulterants by polymerase chain reaction-restriction fragment length polymorphism. Planta Medica, 65, 648–650.

    Article  PubMed  CAS  Google Scholar 

  47. Gong, W., Fu, C. X., Luo, Y. P., et al. (2006). Molecular identification of Sinopodophyllum hexandrumand Dysosmaspecies using cpDNA sequences and PCR-RFLP markers. Planta Medica, 72, 650–652.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, J. H., Lee, J. W., Sung, J. S., et al. (2009). Molecular authentication of 21 Korean Artemisiaspecies (Compositae) by polymerase chain reaction-restriction fragment length polymorphism based on trnL-F region of chloroplast DNA. Biological and Pharmaceutical Bulletin, 32, 1912–1916.

    Article  PubMed  CAS  Google Scholar 

  49. Li, X., Ding, X., Chu, B., et al. (2007). Molecular authentication of Alisma orientaleby PCR-RFLP and ARMS. Planta Medica, 73, 67–70.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, J., Ha, W. Y., Ngan, F. N., et al. (2001). Application of sequence characterized amplified region (SCAR) analysis to authenticate Panaxspecies and their adulterants. Planta Medica, 67, 781–783.

    Article  PubMed  CAS  Google Scholar 

  51. Yau, F. C. F., Wong, K. L., Shaw, P. C., et al. (2002). Authentication of snakes used in Chinese medicine by sequence characterized amplified region (SCAR). Biodiversity and Conservation, 11, 1653–1662.

    Article  Google Scholar 

  52. Yau, F. C. F., Wong, K. L., Wang, J., et al. (2002). Generation of a sequence characterized amplified region probe for authentication of Crocodilian species. The Journal of Experimental Zoology, 294, 382–386.

    Article  PubMed  CAS  Google Scholar 

  53. Dnyaneshwar, W., Preeti, C., Kalpana, J., et al. (2006). Development and application of RAPD-SCAR marker for identification of Phyllanthus emblicaLinn. Biological and Pharmaceutical Bulletin, 29, 2313–2316.

    Article  PubMed  CAS  Google Scholar 

  54. Lee, M. Y., Doh, E. J., Park, C. H., et al. (2006). Development of SCAR marker for discrimination of Artemisia princepsand A. argyifrom other Artemisiaherbs. Biological and Pharmaceutical Bulletin, 29, 629–633.

    Article  PubMed  CAS  Google Scholar 

  55. Sze, S. C., Song, J. X., & Wong, R. N. (2008). Application of SCAR (sequence characterized amplified region) analysis to authenticate Lycium barbarum(wolfberry) and its adulterants. Biotechnology and Applied Biochemistry, 51, 15–21.

    Article  PubMed  CAS  Google Scholar 

  56. Walker, G. T., Little, M. C., Nadeau, J. G., et al. (1992). Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America, 89, 392–396.

    Article  PubMed  CAS  Google Scholar 

  57. Walker, G. T., Fraiser, M. S., Schram, J. L., et al. (1992). Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 20, 1691–1696.

    Article  PubMed  CAS  Google Scholar 

  58. Notomi, T., Okayama, H., Masubuchi, H., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.

    Article  PubMed  CAS  Google Scholar 

  59. Sasaki, Y., & Nagumo, S. (2007). Rapid identification of Curcuma longaand C. aromaticaby LAMP. Biological and Pharmaceutical Bulletin, 30, 2229–2230.

    Article  PubMed  CAS  Google Scholar 

  60. Vincent, M., Xu, Y., & Kong, H. (2004). Helicase-dependent isothermal DNA amplification. EMBO Reports, 5, 795–800.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Y. B., Wang, J., Wang, Z. T., et al. (2003). DNA microarray for identification of the herb of Dendrobiumspecies from Chinese medicinal formulations. Planta Medica, 69, 1172–1174.

    Article  PubMed  CAS  Google Scholar 

  62. Sze, S. C. W., Zhang, Y. B. K., Shaw, P. C., et al. (2008). A DNA microarray for differentiation of the Chinese medicinal herb Dendrobium officinale(Fengdou Shihu) by its 5S ribosomal DNA intergenic spacer region. Biotechnology and Applied Biochemistry, 49, 149–154.

    Article  PubMed  CAS  Google Scholar 

  63. Cho, Y., Mower, J. P., Qiu, Y. L., et al. (2004). Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 101, 17741–17746.

    Article  PubMed  CAS  Google Scholar 

  64. Lau, D. T., Shaw, P. C., Wang, J., et al. (2001). Authentication of medicinal Dendrobiumspecies by the internal transcribed spacer of ribosomal DNA. Planta Medica, 67, 456–460.

    Article  PubMed  CAS  Google Scholar 

  65. Chen, F., Chan, H. Y., Wong, K. L., et al. (2008). Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing. Planta Medica, 74, 889–892.

    Article  PubMed  CAS  Google Scholar 

  66. Li, M., Jiang, R. W., Hon, P. M., et al. (2010). Authentication of the anti-tumor herb Baihuasheshecao with bioactive marker compounds and molecular sequences. Food Chemistry, 119, 1239–1245.

    Article  CAS  Google Scholar 

  67. Law, S. K. Y., Simmons, M. P., Techen, N., et al. (2011). Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordiiHook.f.). Phytochemistry, 72, 21–26.

    Article  PubMed  CAS  Google Scholar 

  68. He, J., Wong, K. L., Shaw, P. C., et al. (2010). Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Medica, 76, 1622–1628.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang, Y. B., Jiang, R. W., Li, S. L., et al. (2007). Chemical and molecular characterization of Hong Dangshen, a unique medicinal material for diarrhea in Hong Kong. Journal of Chinese Pharmaceutical Sciences, 16, 202–207.

    CAS  Google Scholar 

  70. Yu, M. T., Wong, K. L., Zong, Y. Y., et al. (2008). Identification of Swertia mussotiiand its adulterant Swertiaspecies by 5S rRNA gene spacer. China Journal of Chinese Materia Medica, 33, 502–504.

    PubMed  Google Scholar 

  71. Jiang, R. W., Hon, P. M., Xu, Y. T., et al. (2006). Isolation and chemotaxonomic significance of tuberostemospironine-type alkaloids from Stemona tuberosa. Phytochemistry, 67, 52–57.

    Article  PubMed  CAS  Google Scholar 

  72. Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): A procedure for identifying the animal origin of biological specimens. BioTechniques, 12, 408–411.

    PubMed  CAS  Google Scholar 

  73. Sahajpal, V., & Goyal, S. P. (2010). Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): A case study of small Indian civet (Viverricula indica). Science & Justice, 50, 94–97.

    Article  CAS  Google Scholar 

  74. Lou, S. K., Wong, K. L., Li, M., et al. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.

    Article  PubMed  Google Scholar 

  75. Wong, K. L., Wang, J., But, P. P. H., et al. (2004). Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Science International, 139, 49–55.

    Article  PubMed  CAS  Google Scholar 

  76. Alvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.

    Article  PubMed  CAS  Google Scholar 

  77. Baldwin, B. G., Sanderson, M. J., Porter, J. M., et al. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277.

    Article  Google Scholar 

  78. Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One, 2, e508.

    Article  PubMed  Google Scholar 

Suggested Readings

  • Lou, S. K., Wong, K. L., Li, M., But, P. P. H., Tsui, S. K., & Shaw, P. C. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.

    Article  PubMed  Google Scholar 

  • Shaw, P. C., Wang, J., & But, P. P. H. (2002). Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.

    Book  Google Scholar 

  • Shaw, P. C., Jiang, R. W., Wong, K. L., & But, P. P. H. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.

    Google Scholar 

  • Shaw, P. C., Wong, K. L., Chan, A. W., Wong, W. C., & But, P. P. H. (2009). Patent applications for using DNA technologies to authenticate medicinal herbal material. Chinese Medicine, 4, 21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pang-Chui Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Shanghai Scientific and Technical Publishers and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, M., But, P.PH., Shaw, PC. (2013). Molecular Identification of Traditional Medicinal Materials. In: Huang, Lq. (eds) Molecular Pharmacognosy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4945-0_3

Download citation

Publish with us

Policies and ethics