Skip to main content

Apoptotic Regulators and Its Clinical Implications in Mammary Carcinoma

  • Chapter
  • First Online:
Novel Apoptotic Regulators in Carcinogenesis
  • 551 Accesses

Abstract

Today, this is an established fact that like other organs, normal breast development is also used to be monitored by a balance between cell proliferation and apoptosis. As a consequence, tumor growth is not an outcome of abnormal cell proliferation only, but of reduced apoptosis, too. Apoptosis or programmed cell death maintains the integrity of a healthy individual, while dysregulation of this mechanism becomes crucial for the pathophysiology of tumorigenesis. Bcl-2 family of proteins, caspaes, IAP family of proteins, TNF superfamily members are the important regulators of apoptotic signaling pathways. Therefore, several therapeutic agents have been exploited targeting these apoptotic pathways. The review has been concentrated on physiology and pathophysiology of different apoptotic regulators and their therapeutic intervention towards breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    Article  CAS  PubMed  Google Scholar 

  • Aird KM, Ding X, Baras A et al (2008) Trastuzumab signaling in ErbB2-overexpressing inflammatory breast cancer correlates with X-linked inhibitor of apoptosis protein expression. Mol Cancer Ther 7:38–47

    Article  CAS  PubMed  Google Scholar 

  • Anderson GM, Nakada MT, DeWitte M (2004) Tumor necrosis factor-alpha in the pathogenesis and treatment of cancer. Curr Opin Pharmacol 4:314–320

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Invest 197:241–246

    Article  Google Scholar 

  • Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Beroukhim R, Mermel C, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  CAS  PubMed  Google Scholar 

  • Blajeski AL, Kottke TJ, Kaufmann SH (2001) A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 270:277–288

    Article  CAS  PubMed  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S et al (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  CAS  PubMed  Google Scholar 

  • Chevalier B, Fumoleau P, Kerbrat P et al (1995) Docetaxel is a major cytotoxic drug for the treatment of advanced breast cancer: a Phase 2 trial of the clinical screening cooperative group of the European Organization for Research and Treatment of Cancer. J Clin Oncol 13:314–322

    Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97(4):1754–1759

    Article  CAS  PubMed  Google Scholar 

  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C et al (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  CAS  PubMed  Google Scholar 

  • Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  • Datta R, Oki E, Endo K et al (2000) XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage. J Biol Chem 275:31733–31738

    Article  CAS  PubMed  Google Scholar 

  • De Azevedo WF, Leclerc S, Meijer L et al (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  • Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53(3):153–159

    Article  PubMed  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins: suppressors of apoptosis. Genes Dev 13:239–252

    Article  CAS  PubMed  Google Scholar 

  • Deveraux QL, Reed JC, Salvesen GS (2000) Caspases and their natural inhibitors as therapeutic targets for regulating apoptosis. In: von der Helm K, Korant BD, Cheronis JC (eds) Handbook of experimental pharmacology – proteases as targets for therapy, vol 140(3). Springer, Berlin/Heidelberg/New York, pp 329–340

    Chapter  Google Scholar 

  • Earnshow WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  Google Scholar 

  • Eckelman BP, Salvesen GS (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 281:3254–3260

    Article  CAS  PubMed  Google Scholar 

  • Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Zhivotovsky B, Orrenius S (1999) All along the watchtower: on the regulation of apoptosis regulators. FASEB J 13:1647–1657

    CAS  PubMed  Google Scholar 

  • Fernández de Corres L (1984) Contact dermatitis from Frullania, Compositae and other plants. Contact Dermatitis 11(2):74–79

    Article  PubMed  Google Scholar 

  • Foster FM, Owens TW, Tanianis-Hughes J (2009) Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res 11(3):R41

    Article  PubMed  CAS  Google Scholar 

  • Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  CAS  PubMed  Google Scholar 

  • Furth PA (1999) Apoptosis and the development of breast cancer. In: Bowcock AM (ed) Breast cancer: molecular genetics, pathogenesis, and therapeutics. Humana Press, Totowa, pp 171–180

    Google Scholar 

  • Geske FJ, Gerschenson IE (2001) The biology of apoptosis. Hum Pathol 32:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Giam M, Huang DC, Bouillet P (2008) BH3-only proteins and their roles in programmed cell death. Oncogene 27(Suppl 1):S128–S136

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Gruss HJ, Dower SK (1995) Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 85(12):3378–3404

    CAS  PubMed  Google Scholar 

  • Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    Article  CAS  PubMed  Google Scholar 

  • Hiraga T, Williams PJ, Mundy GR et al (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res 61:4418–4424

    CAS  PubMed  Google Scholar 

  • Holcik M, Korneluk RG (2001) XIAP, the guardian angel. Nat Rev Mol Cell Biol 7:550–556

    Article  CAS  Google Scholar 

  • Holkova B, Perkins EB, Ramakrishnan V et al (2011) Phase I trial of bortezomib (PS-341; NSC 681239) and alvocidib (flavopiridol; NSC 649890) in patients with recurrent or refractory B-cell neoplasms. Clin Cancer Res 17(10):3388–3397

    Article  CAS  PubMed  Google Scholar 

  • Holmes FA, Walters RS, Theriault RL et al (1991) Phase II trial of Taxol, an active drug in the treatment of metastatic breast cancer. J Natl Cancer Inst 83:1797–1805

    Article  CAS  PubMed  Google Scholar 

  • Hui A-M, Zhang W, Chen W et al (2004) Agents with selective estrogen receptor (ER) modulator activity induce apoptosis in vitro and in vivo in ER-negative glioma cells. Cancer Res 64:9115–9123

    Article  CAS  PubMed  Google Scholar 

  • Ioachim HL, Decuseara R, Giancotti F et al (2005) FAS and FAS-L expression by tumor cells and lymphocytes in breast carcinomas and their lymph node metastases. Pathol Res Pract 200:743–751

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  • Jäger R, Herzer U, Schenkel J et al (1997) Overexpression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc-induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795

    Article  PubMed  Google Scholar 

  • Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  CAS  PubMed  Google Scholar 

  • Jones SE, Erban J, Overmoyer B (2005) Randomized Phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol 23(24):5542–5551

    Article  CAS  PubMed  Google Scholar 

  • Kaufamnn SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  CAS  Google Scholar 

  • Keane MM, Ettenberg SA, Lowrey GA et al (1996) Fas expression and function in normal and malignant breast cell lines. Cancer Res 56:4791–4798

    CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  Google Scholar 

  • Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646

    Article  CAS  PubMed  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR et al (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  • Krajewski S, Krajewska M, Shabaik A et al (1994) Immunohistochemical determination of in vivo distribution of bax, a dominant inhibitor of bcl-2. Am J Pathol 145:1323–1333

    CAS  PubMed  Google Scholar 

  • Krajewski S, Krajewska M, Turner BC et al (1999) Prognostic significance of apoptosis regulators in breast cancer. Endocr Relat Cancer 6:29–40

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • LaCasse EC, Mahoney DJ, Cheung HH et al (2008) IAP-targeted therapies for cancer. Oncogene 27:6252–6275

    Article  CAS  PubMed  Google Scholar 

  • Lavrik IN, Golks A, Baumann S et al (2006) Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis. Blood 108(2):559–565

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75

    Article  CAS  Google Scholar 

  • Le Tourneau C, Faivre S, Laurence V et al (2010) Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer 46(18):3243–3250

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Yang W, Lan K-H et al (2002) Enhanced sensitization to taxol-induced apoptosis by Herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res 62:5703–5710

    CAS  PubMed  Google Scholar 

  • Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  CAS  PubMed  Google Scholar 

  • Lund LR, Romer J, Thomasset N et al (1996) Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122:181–193

    CAS  PubMed  Google Scholar 

  • Mace PD, Shirley S, Day CL (2010) Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differ 17:46–53

    Article  CAS  PubMed  Google Scholar 

  • Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  CAS  PubMed  Google Scholar 

  • Medina P, Silvente-Poirot S, Poirot M (2009) Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5(7):1066–1067

    Article  PubMed  Google Scholar 

  • Meijer L, Borgne A, Mulner O et al (1997) (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  CAS  PubMed  Google Scholar 

  • Mgbonyebi OP, Russo J, Russo IH (1999) Roscovitine induces cell death and morphological changes indicative of apoptosis in MDA-MB-231 breast cancer cells. Cancer Res 59:1903–1910

    CAS  PubMed  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Motoyama N, Wang FP, Roth KA et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x deficient mice. Science 267:1506–1510

    Article  CAS  PubMed  Google Scholar 

  • Motoyama N, Kimura T, Takahashi T et al (1999) Bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J Exp Med 189:1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Muchmore SW, Sattler M, Liang H et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  CAS  PubMed  Google Scholar 

  • Mullauer L, Mosberger I, Grusch M et al (2000) Fas ligand is expressed in normal breast epithelial cells and is frequently up-regulated in breast cancer. J Pathol 190:20–30

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K-I, Nakayama K, Izumi N et al (1993) Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 261:1584–1588

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama K-I, Negishi I et al (1994) Targeted disruption of bcl-2ab in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci U S A 91:3700–3704

    Article  CAS  PubMed  Google Scholar 

  • Nakshatri H, Susan E, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23:7330–7344

    Article  CAS  PubMed  Google Scholar 

  • Newton K, Strasser A (2001) Cell death control in lymphocytes. Adv Immunol 76:179–226

    Article  Google Scholar 

  • Oliveras-Ferraros C, Vazquez-Martin A, Cufí S et al (2011) Inhibitor of apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies. Biochem Biophys Res Commun 407:412–419

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Zhivotovsky B (2011) Caspases and cancer. Cell Death Differ 18:1441–1449

    Article  CAS  PubMed  Google Scholar 

  • Onitilo AA, Doi SA, Engel JM et al (2012) Clustering of venous thrombosis events at the start of tamoxifen therapy in breast cancer: a population-based experience. Thromb Res 130(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Pandey PR, Okuda H, Watabe M et al (2011) Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 130:387–398

    Article  CAS  PubMed  Google Scholar 

  • Pegram MD, Konecny GE, O’Callaghan C et al (2004) Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 96(10):739–749

    Article  CAS  PubMed  Google Scholar 

  • Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM et al (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–467

    Article  CAS  PubMed  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Plati J, Bucur O, Far RK (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol 3:279–296

    Article  CAS  Google Scholar 

  • Pozo-Guisado E, Merino JM, Mulero-Navarro S et al (2005) Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kB. Int J Cancer 115:74–84

    Article  CAS  PubMed  Google Scholar 

  • Pozzi S, Raje N (2011) The role of bisphosphonates in multiple myeloma: mechanisms, side effects, and the future. Oncologist 16(5):651–662

    Article  CAS  PubMed  Google Scholar 

  • Print CG, Loveland KL, Gibson L et al (1998) Apoptosis regulator Bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 95:12424–12431

    Article  CAS  PubMed  Google Scholar 

  • Pullan S, Wilson J, Metcalfe A et al (1996) Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J Cell Sci 109:631–642

    CAS  PubMed  Google Scholar 

  • Rathmell JC, Thompson CB (1999) The central effectors of cell death in the immune system. Annu Rev Immunol 17:781–828

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (2001) The surviving saga goes in vivo. J Clin Invest 108:965–969

    Article  CAS  PubMed  Google Scholar 

  • Reginato MJ, Mills KR, Becker EB et al (2005) Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25:4591–4601

    Article  CAS  PubMed  Google Scholar 

  • Riggins RB, Zwart A, Nehra R et al (2005) The nuclear factor KB inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant) – induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther 4:33–41

    CAS  PubMed  Google Scholar 

  • Rowinsky EK (2005) Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol 23:9394–9407

    Article  CAS  PubMed  Google Scholar 

  • Saikumar P, Dong Z, Mikhailov V et al (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Boyse BF, Story B et al (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557

    CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  CAS  PubMed  Google Scholar 

  • Schwartz GK, Farsi K, Maslak P et al (1997) Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. Clin Cancer Res 3:1467–1472

    CAS  PubMed  Google Scholar 

  • Senaratne SG, Pirianov G, Mansi JL et al (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82(8):1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Shibata MA, Liu ML, Knudson MC et al (1999) Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/ SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 18:2692–2701

    Article  CAS  PubMed  Google Scholar 

  • Simstein R, Burow M, Parker A et al (2003) Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 228(9):995–1003

    CAS  Google Scholar 

  • Singh TR, Shankar S, Chen X et al (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63:5390–5400

    CAS  PubMed  Google Scholar 

  • Singh N, Nigam M, Ranjan V et al (2009) Caspase mediated enhanced apoptotic action of cyclophosphamide and resveratrol-treated MCF-7 cells. J Pharmacol Sci 109:473–485

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  • Song J, Sapi E, Brown W et al (2000) Roles of Fas and Fas ligand during mammary gland remodeling. J Clin Invest 106:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    Article  CAS  PubMed  Google Scholar 

  • Stein T, Salomonis N, Gusterson BA (2007) Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 12:25–35

    Article  PubMed  Google Scholar 

  • Sturm I, Kohne CH, Wolff G et al (1999) Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases. J Clin Oncol 17:1364–1374

    CAS  PubMed  Google Scholar 

  • Suliman A, Lam A, Datta R et al (2000) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial- dependent and -independent pathways. Oncogene 20:2122–2133

    Article  CAS  Google Scholar 

  • Teixeira C, Reed JC, Pratt MAC (1995) Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 protooncogene expression in human breast cancer cells. Cancer Res 55:3902–3907

    CAS  PubMed  Google Scholar 

  • Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116(4):491–497

    Article  CAS  PubMed  Google Scholar 

  • Vegran F, Boidot R, Oudin C et al (2006) Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin Cancer Res 12:5794–5800

    Article  CAS  PubMed  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR et al (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    Article  CAS  PubMed  Google Scholar 

  • Vucic D, Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13(20):5995–6000

    Article  CAS  PubMed  Google Scholar 

  • Wagner KU, Claudio E, Rucker EB III et al (2000) Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development 127:4949–4958

    CAS  PubMed  Google Scholar 

  • Wallach D, Varfolomeev EE, Malinin NL et al (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    Article  CAS  PubMed  Google Scholar 

  • Willis S, Day CL, Hinds MG et al (2003) The Bcl-2-regulated apoptotic pathway. J Cell Sci 116(20):4053–4056

    Article  CAS  PubMed  Google Scholar 

  • Wingo PA, Tong T, Bolden S (1995) Cancer statistics, 1995. CA Cancer J Clin 45:8–30

    Article  CAS  PubMed  Google Scholar 

  • Wittmann S, Bali P, Donapaty S et al (2003) Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res 63:93–99

    CAS  PubMed  Google Scholar 

  • Wojciechowski J, Horky M, Gueorguieva M et al (2003) Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int J Cancer 106:486–495

    Article  CAS  PubMed  Google Scholar 

  • Wu J (1996) Apoptosis and angiogenesis: two promising tumor markers in breast cancer. Anticancer Res 16:2233–2240

    CAS  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-J, Kimijima I, Onda M et al (1999) Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-XL, without alteration of p53 protein levels. Clin Cancer Res 5:2971–2977

    CAS  PubMed  Google Scholar 

  • Zhao YX, Lajoie G, Zhang H et al (2000) Tumor necrosis factor receptor p55- deficient mice respond to acute Yersinia enterocolitica infection with less apoptosis and more effective host resistance. Infect Immun 68:1243–1251

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Das, S., Chatterjee, M. (2012). Apoptotic Regulators and Its Clinical Implications in Mammary Carcinoma. In: Chen, G., Lai, P. (eds) Novel Apoptotic Regulators in Carcinogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4917-7_9

Download citation

Publish with us

Policies and ethics