Skip to main content

Construction and Demolition Waste Recycling in a Broader Environmental Perspective

  • Chapter
  • First Online:
Progress of Recycling in the Built Environment

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 8))

Abstract

The scope of this chapter is to analyse the prospects for recycling the mineral fraction of construction and demolition wastes as aggregates within the frame of sustainable construction, and to identify research needs. Sustainable construction is defined by life-cycle evaluation of environmental, economic and social aspects, and is dependent not only from production processes but also from local constraints and market alternatives. Environmental performance of recycling construction and demolition waste must be evaluated cradle-to-grave, using multi-criteria life-cycle assessment tools. Economic performance depends on life cycle cost and has to consider externalities. Social assessment can be done using the new social life cycle assessment methodology. The flows of aggregates and construction waste in the near future, as well as the presence of informal activities in the supply chain, have strong influence on the sustainability in every location. Attractiveness of recycling CDW as aggregates will depend of local environmental, social and economic conditions. Examples of life cycle thinking applied to CDW aggregates are given and research needs discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Total material requirement includes hidden flows – like deliberate alterations of landscape and quarry cover removal. Direct material input includes only materials that enter in the economy for further processing, like wooden logs, minerals shipped to the mill, etc.

  2. 2.

    The average proportion between aggregate and cement varies from country to country and with time – it probably will grow with the tendency of reduction of cement content due to environmental concerns [29, 30]. In the literature this proportion has been estimated from 5.4 t/t for the UK [31] to 7.6–8.9 t/t in the USA [17]. The Sustainable Europe Research Institute data acounts for 4.4 tonnes per year per person [32] for total global aggregate consumption, which is inconsistent with data from cement consumption.

  3. 3.

    http://aggregain.wrap.org.uk/sustainability/sustainability_tools_and_approaches/aggregates_lca.html

  4. 4.

    http://www.ce.berkeley.edu/~horvath/palate.html

References

  1. Delatte, N.J.: Lessons from Roman cement and concrete. J. Prof. Issues Eng. Educ. Pract. 127(3), 109–115 (2001)

    Article  Google Scholar 

  2. Lauritzen, E.K.: Emergency construction waste management. Saf. Sci. 30, 45–53 (1998)

    Article  Google Scholar 

  3. Vandecasteele, C., van der Sloot, H.: Sustainable management of waste and recycled materials in construction. Waste Manag. 31, 199–200 (2011)

    Article  Google Scholar 

  4. European Commission – Joint Research Centre – Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD), Handbook – General guide for Life Cycle Assessment – Detailed guidance. 1st edn. March 2010 EUR 24708 EN, Publications Office of the European Union, Luxembourg (2010)

    Google Scholar 

  5. Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., Koning, A.: Handbook on Life Cycle Assessment. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  6. Sayagh, S., Ventura, A., Hoang, T., François, D., Jullien, A.: Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resour. Conserv. Recycl. 54, 348–358 (2010)

    Article  Google Scholar 

  7. Ekvall, T., Finnveden, G.: Allocation in ISO 14041–a critical review. J. Clean. Prod. 9, 197–208 (2001)

    Article  Google Scholar 

  8. Bala, A., Raugei, M., Benveniste, G., Gazulla, C., Fullana-I-Palmer, P.: Simplified tools for global warming potential evaluation: when “good enough” is best. Int. J. Life Cycle Assess. 15, 489–498 (2010)

    Article  Google Scholar 

  9. Fuller, S.K., Petersen, S.R.: Life-Cycle Costing Manual, 1995th edn. NIST, Gaithersburg (1996)

    Google Scholar 

  10. Norris, G.A.: Integrating economic analysis into LCA. Environ. Qual. Manag. 10, 59–64 (2001)

    Article  Google Scholar 

  11. UNEP, SETAC: Guidelines for Social Life Cycle Assessment of Products: Social and Socio-Economic LCA Guidelines Complementing Environmental LCA and Life Cycle Costing, Contributing to the Full Assessment of Goods. United Nations Environment Programme, Paris (2009)

    Google Scholar 

  12. Benoît-Norris, C., Vickery-Niederman, G., Valdivi, S., Franze, J., Travers, M., Ciroth, A., et al.: Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. Int. J. Life Cycle Assess. 16, 682–690 (2011)

    Article  Google Scholar 

  13. Hans, J., Chevalier, J.: Sustainable tools and methods for estimating building materials and components service life. In: CIB, C. (ed.) 10th International Conference on Durability of Building Materials and Components, Lyon (2005)

    Google Scholar 

  14. John, V. M.: Sustainable construction, innovation and durability: trends and research needs. In: Edições, F. (ed.) XII International Conference on Durability of Building Materials and Components, pp. 15–21. Porto (2011)

    Google Scholar 

  15. Adriaanse, A., et al.: Resource Flows: The Material Basis of Industrial Economies. World Resources Institute, Washington, DC (1997)

    Google Scholar 

  16. Moll, S., Bringezu, S., Schbütz, H.: Resource Use in European Countries. Wuppertal Institute for Climate, Environment and Energy, Wuppertal (2005)

    Google Scholar 

  17. Low, M.S.: Material flow analysis of concrete in the United States. Dissertation, Massachusetts Institute of Technology (2005)

    Google Scholar 

  18. Gardner, G.: Mind Over Matter: Recasting the Role of Materials in Our Lives. Worldwatch Institute, Washington, DC (1998)

    Google Scholar 

  19. Cederberg, C., Persson, U.M., Neovius, K., Molander, S., Clift, R.: Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ. Sci. Technol. 45, 1773–1779 (2011)

    Article  Google Scholar 

  20. Pereira, D., Santos, D., Vedoveto, M., Guimarães, J.: Fatos Florestais da Amazônia 2010. Imazon, Belém (2010)

    Google Scholar 

  21. John, V.M.: Reciclagem De Resíduosna Construção Civil: Contribuição à metodologia de pesquisa e desenvolvimento. Dissertation, University of São Paulo (2000)

    Google Scholar 

  22. Matthews, E., et al.: The Weight of Nations: Material Outflows from Industrial Economies. World Resources Institute, Washington, DC (2000)

    Google Scholar 

  23. Müller, N., Harnisch, J.: A Blueprint for a Climate Friendly Cement Industry. Ecofys Germany GmbH on behalf of WWF International, Nürnberg (2008)

    Google Scholar 

  24. Brown III, W. M., Matos, G. R., Sullivan, D. E.: Materials and Energy Flows in the Earth Science Century – A Summary of a Workshop Held by the USGS in November 1998. Circular 1194. U.S. Geological Survey, Denver (2000)

    Google Scholar 

  25. Bergsdal, H., Bohne, R.A., Brattebo, H.: Projection of construction and demolition waste in Norway. J. Ind. Ecol. 11, 27–39 (2008)

    Article  Google Scholar 

  26. Hu, M., van der Voet, E., Huppes, G.: Dynamic material flow analysis for strategic construction and demolition waste management in Beijing. J. Ind. Ecol. 14, 440–456 (2010)

    Article  Google Scholar 

  27. Danielsen, S.W.: A Best Available Concept for the Production and Use of Aggregates, in Eco-Serve Seminar. EC Thematic Network European Construction in Service of Society, Warsaw (2006)

    Google Scholar 

  28. SNIC: Relatório Anual 2009. Sindicato Nacional da Indústria do Cimento -SNIC, Rio de Janeiro (2010)

    Google Scholar 

  29. The concrete centre -TCC, Mineral Products Association-MPA: Concrete Industry Sustainability Performance Report. Based on 2009 Production Sustainable Concrete Forum. The Concrete Centre -TCC, Surrey (2010)

    Google Scholar 

  30. Formoso, C.T., Soibelman, L., de Cesare, C., Isa, E.L.: Material waste in building industry: main causes and prevention. J. Constr. Eng. Manag. 128, 316 (2002)

    Article  Google Scholar 

  31. Bossink, B.A.G., Brouwers, H.J.H.: Construction waste: quantification and source evaluation. J. Constr. Eng. Manag. 122, 55 (1996)

    Article  Google Scholar 

  32. Souza, U.E.L., Andrade, A.C., Paliari, J.C., Agopyan, V.: Material waste in the ceramic tiling job. In: 10th Symposium Construction Innovation and Global Competitiveness 10th International Symposium, pp. 536–545. Boca Raton, FL (2003)

    Google Scholar 

  33. Jaillon, L., Poon, C.S., Chiang, Y.H.: Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong. Waste Manag. 29, 309–320 (2009)

    Article  Google Scholar 

  34. Damineli, B.L., Kemeid, F.M., Aguiar, P.S., John, V.M.: Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 32, 555–562 (2010)

    Article  Google Scholar 

  35. Schneider, F., Enste, D.H.: Shadow economies: size, causes, and consequences. J. Econ. Lit. XXXVIII, 77–114 (2000)

    Google Scholar 

  36. Schneider, F., Enste, D.: Shadow Economies Around the World – Size, Causes, and Consequences. Working paper WP/00/26, International Monetary Fund (2000)

    Google Scholar 

  37. Danopoulos, C.P., Znidaric, B.: Informal economy, tax evasion, and poverty in a democratic setting: Greece. Mediterr. Q.: A J. Glob. Issues 18, 67–84 (2007)

    Google Scholar 

  38. Gërxhani, K.: The informal sector in developed and less developed countries: a literature survey. Public Choice 120, 267–300 (2004)

    Article  Google Scholar 

  39. FGV Projetos: Tributação na indústria brasileira de materiais de construção, São Paulo (2006)

    Google Scholar 

  40. Dada, J.O.: Harnessing the Potentials of the Informal Sector for Sustainable Development – 850 Lessons from Nigeria. Administrative Staff College of Nigeria (ASCON), Badagry (2007)

    Google Scholar 

  41. Bolen, W.: Sand and gravel (construction). U.S. Geological Survey, Mineral Commodity Summaries January 2012, 136–137 (2012)

    Google Scholar 

  42. Willett, J.: Stone (crushed). U.S. Geological Survey, Mineral Commodity Summaries January 2012, 152–153 (2012)

    Google Scholar 

  43. Neubauer, C., et al.: Aggregates Case Study. Final Report. European Commission’s Joint Research Centre/Umweltbundesamt, Vienna (2008)

    Google Scholar 

  44. Montgomery, M.R.: The urban transformation of the developing world. Science 319, 761–764 (2008)

    Article  Google Scholar 

  45. Jiang, L., Young, M.H., Hardee, K.: Population, urbanization, and the environment. World Watch 21(5), 34–39 (2008)

    Google Scholar 

  46. Schneider, D.M.: Deposições irregulares de resíduos da construção civil na cidade de São Paulo. Dissertation, Universidade de São Paulo (2002)

    Google Scholar 

  47. Bibby, A.: Green jobs in construction: small changes – big effect. World Work. Maga. 70, 38–41 (2010)

    Google Scholar 

  48. Coelho, A., de Brito, J.: Influence of construction and demolition waste management on the environmental impact of buildings. Waste Manag. 32, 532–541 (2011)

    Article  Google Scholar 

  49. Marinković, S., Radonjanin, V., Malešev, M., Ignja, I.: Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 30, 2255–2264 (2010)

    Article  Google Scholar 

  50. Chowdhury, R., Apul, D., Fry, T.: A life cycle based environmental impacts assessment of construction materials used in road construction. Resour. Conserv. Recycl. 54, 250–255 (2010)

    Article  Google Scholar 

  51. Chen, M., Lin, J., Wu, S.: Potential of recycled fine aggregates powder as filler in asphalt mixture. Constr. Build Mater. 25, 3909–3914 (2011)

    Article  Google Scholar 

  52. Fry, C., Wayman, M.: Sustainable Aggregates. Theme 1-Reducing the Environmental Effect. ALSF (2007)

    Google Scholar 

  53. Angulo, S.C., Carrijo, P.M., Figueiredo, A.D., Chaves, A.P., John, V.M.: On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Mater. Struct. 43, 519–528 (2010)

    Article  Google Scholar 

  54. Levy, S.M., Helene, P.: Durability of recycled aggregates concrete: a safe way to sustainable 878 development. Cem. Concr. Res. 34, 1975–1980 (2004)

    Google Scholar 

  55. Mroueh, U.M., Eskola, P., Laine-Ylijoki, J.: Life-cycle impacts of the use of industrial by-products in road and earth construction. Waste Manag. 21, 271–277 (2001)

    Article  Google Scholar 

  56. Environmental Protection Agency, and demolition waste landfills.

    Google Scholar 

  57. Engelsen, C.J., van der Sloot, H.A., Wibetoe, G., Justnes, H., Lund, W., Stoltenberg, E.: Leaching characterisation and geochemical modelling of minor and trace elements released from recycled concrete aggregates. Cem. Concr. Res. 40, 1639–1649 (2010)

    Article  Google Scholar 

  58. Galvín, A.P., Ayuso, J., Jiménez, J.R., Agrela, F.: Comparison of batch leaching tests and influence of pH on the release of metals from construction and demolition wastes. Waste Manag. 32, 88–95 (2012)

    Article  Google Scholar 

  59. Mulugeta, M., Engelsen, C.J., Wibetoe, G., Lund, W.: Charge-based fractionation of oxyanion-forming metals and metalloids leached from recycled concrete aggregates of different degrees of carbonation: a comparison of laboratory and field leaching tests. Waste Manag. 31, 253–258 (2011)

    Article  Google Scholar 

  60. Jang, Y., Townsend, T.: Sulfate leaching from recovered construction and demolition debris fines. Adv. Environ. Res. 5, 203–217 (2001)

    Article  Google Scholar 

  61. Sani, D., Moriconi, G., Fava, G., Corinaldesi, V.: Leaching and mechanical behaviour of concrete manufactured with recycled aggregates. Waste Manag. 25, 177–182 (2005)

    Article  Google Scholar 

  62. Hendriks, ChF., Janssen, GMT., Xing, WH., Dobbelsteen, AAJF van den.: A new Vision on the Building Cylce. Aeneas, Technical Publishers, Boxtel (2004)

    Google Scholar 

  63. In: NATO. Available at http://www.nato.int

  64. In: Rotterdam City Council & Port of Rotterdam Authority. Available at http://www.cityportsrotterdam.com

  65. In: FOD Economie & BPF : ‘De aardoliemarkt’, FOD Economie, KMO, Middenstand en Energie. Available at http://economie.fgov.be/energy/balance_sheets/2002/evol2002_nl-08.htm#Raffinage (2007). Accessed 2007

  66. Mueller, A.: Closed loop of concrete rubble?. Available at www.uni-weimar.de/Bauing/aufber/Lehre (2007). Accessed 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Vázquez .

Editor information

Editors and Affiliations

Appendices

Appendices

2.1.1 Appendix 1: Calculation NATO Headquarters Case

  1. 1.

    Demarcation of project area and determination of objects to be demolishe:

    • carried out by Google Maps and site visit

    • ±70 ha and ±70 objects

    figure a
  2. 2.

    Calculation of environmental risks:

    • carried out by site visit and checklists

    • non acceptable risk (“red light”): to incinerator

    • acceptable risk (“amber light”): to sorting/washing plant

    • no risk (“green light”): to crusher

  3. 3.

    Determination of materials and calculation of volumes:

    to be demolished:

    carried out by Forum S.A, total = 111,690 m3

    to be built:

    carried out by architects of Asar S.A., total = 354,000 m3

  4. 4.

    Calculation of mass per type of material

  5. 5.

    Interconnection of environmental risks (see Table 2.8):

    Table 2.8 Interconnection of environmental risks NATO headquarters case
  6. 6.

    Determination of distance from project to:

    • nearest quarry: ±30 km

    • waste collector: ±10 km

    • home base of mobile plants: ±50 km

  7. 7.

    Development of logistic scenarios:

    • scenario 0: “no” recycling and application of primary raw materials only

    • scenario 1: “off site” recycling and maximum use of recycled materials on site

    • scenario 2: “on site” recycling and maximum use of recycled materials on site

  8. 8.

    Choice of rolling stock (type and capacity); definition of assumptions concerning CO2 emissions, diesel fuel consumption and share of used materials (diesel fuel and primary aggregates) in extraction of raw materials:

    • capacity lorries:

    20 t per load

    • capacity crushers (type: impact crusher):

    1,000 t per day per crusher

    • CO2 emissions (estimation):

    880 g per km for lorries

     

    260 g per km for vans

    • diesel fuel consumption (estimation):

    43 l per 100 km for lorries

     

    12 l per 100 km for vans

    • share diesel fuel in crude oil extraction:

    16.79%

    • share primary aggregates (sand and gravel)

     

    in excavation raw materials:

    80%

  9. 9.

    Calculation of total kilometres for lorries and vans; calculation of CO2 emission; calculation of total diesel fuel consumption and crude oil extraction; calculation of consumption of primary aggregates; calculation of total excavation of raw materials:

    scenario 0:

    • transport of waste = 200,000 t/20 t/load × 2 (to and fro) × 10 km/load = 200,000 km

    • transport of primary materials = 850,000 t/20 t/load × 2 (to and fro) × 30 km/load = 2,550,000 km

    • CO2 emission = 2,750,000 km × 880 g CO2/km = 2,420 t = 242 ha year tropical rain forest

    • crude oil extraction = (2,750,000 km × 43 l/100 km)/16.79% = 7,042,883 l or 7,043 m3

    • excavation of primary resources for aggregates = 850,000 t/80% = 1,062,500 t or 531,250 m3

    • total excavation of raw materials = 7,043 m 3+ 531,250 m 3= 538,293 m 3

    scenario 1:

    • transport of waste = 200,000 t/20 t/load × 2 (to and fro) × 10 km/load = 200,000 km

    • transport of secondary materials = 200,000 t/20 t/load × 2 (to and fro) × 10 km/load = 200,000 km

    • transport of primary materials = 650,000 t/20 t/load × 2 (to and fro) × 30 km/load = 1,950,000 km

    • CO2 emission = 2,350,000 km × 880 g CO2/km = 2,068 t = 207 ha year tropical rain forest

    • crude oil extraction = (2,350,000 km x 43 l/100 km)/16.79% = 6,018,463 l or 6,018 m3

    • excavation of primary resources for aggregates = 650,000 t/80% = 812,500 t or 406,250 m3

    • total excavation of raw materials = 6,018 m 3+ 406,250 m 3= 412,268 m 3

    scenario 2:

    • transport of mobile crushers = 2 × 2 × 2 loads × 2 (before and after project) × 50 km/load = 800 km

    • transport of mobile concrete plant = 2 × 2 loads × 2 (before and after project)2 × 50 km/load = 400 km

    • personnel of mobile plants = 3 teams × 100 days × 100 km/day = 30,000 km

    • transport of primary materials = 650,000 t/20 t/load × 2 (to and fro) × 30 km/load = 1,950,000 km

    • CO2 emission = 1,951,200 km × 880 g CO2/km + 30,000 km × 260 g CO2/km = 1,725 t = 172 ha year rain forest

    • crude oil extraction = (1,951,200 km × 43 l/100 km + 30,000 km × 12 l/100 km)/16.79% = 5,018,559 l or 5,019 m3

    • excavation of primary resources for aggregates = 650,000 t/80% = 812,500 t or 406,250 m3

    • total excavation of raw materials = 5,019 m 3+ 406,250 m 3= 411,269 m 3

2.1.2 Appendix 2: Calculation City Harbour Rotterdam

  1. 1.

    Demarcation of project area and determination of objects to be demolished:

    • carried out by Google Maps and site visit

    • ±70 ha and ±60 objects

    figure e
  2. 2.

    Calculation of environmental risks:

    • carried out by site visit and checklists (preliminary)

    • non acceptable risk (“red light”): to incinerator

    • acceptable risk (“amber light”): to sorting/washing plant

    • no risk (“green light”): to crusher

  3. 3.

    Determination of materials and calculation of volumes:

    to be demolished:

    carried out by engineers of GWRO, total = 106,960 m3

    to be built:

    estimated by Enviro Challenge, total = 166,667 m3

    (assumption: 800 dwellings and 500 t per dwelling)

  4. 4.

    Calculation of mass per type of material

  5. 5.

    Interconnection of environmental risks (see Table 2.9):

    Table 2.9 Interconnection of environmental risks City Harbour Rotterdam case
  6. 6.

    Determination of distance from project to:

    • nearest quarry: ±170 km

    • concrete supplier: ±18 km

    • waste collector: ±17 km

    • home base of mobile plants: ±17 km

  7. 7.

    Development of logistic scenarios:

    • scenario 0: “no” recycling and application of primary raw materials only

    • scenario 1: “off site” recycling and maximum use of recycled materials on site

    • scenario 2: “on site” recycling and maximum use of recycled materials on site

  8. 8.

    Choice of rolling stock (type and capacity); definition of assumptions concerning CO2 emissions, diesel fuel consumption and share of used materials (diesel fuel and primary aggregates) in extraction of raw materials:

    • capacity lorries:

    30 t per load

    • capacity concrete mixers:

    10 t per load

    • capacity crusher (type: impact crusher):

    1,000 t per day

    • CO2 emissions (estimation):

    880 g per km for lorries

     

    260 g per km for vans

    • diesel fuel consumption (estimation):

    43 l per 100 km for lorries

     

    12 l per 100 km for vans

    • share diesel fuel in crude oil extraction:

    16.79%

    • share primary aggregates (sand and gravel)

     

    in excavation raw materials:

    80%

  9. 9.

    Calculation of total kilometres for lorries and vans; calculation of CO2 emission; calculation of total diesel fuel consumption and crude oil extraction; calculation of consumption of primary aggregates; calculation of total excavation of raw materials:

    scenario 0:

    • transport of waste = 227,811 t/30 t/load × 2 (to and fro) × 17 km/load = 258,186 km

    • transport of primary materials = 100,000 t/30 t/load × 2 (to and fro) × 170 km/load = 1,133,333 km

    • transport of concrete = 300,000 t/10 t/load × 2 (to and fro) × 18 km/load = 1,080,000 km

    • transport of primary materials (concrete) = 200,000 t/30 t/load × 2 (to and fro) × 170 km/load = 2,266,667 km

    • CO 2 emission = 4,738,186 km × 880 g CO2/km = 4,170 t = 417 ha year tropical rain forest

    • crude oil extraction = (4,738,186 km × 43 l/100 km)/16.79% = 12,134,723 l or 12,135 m3

    • excavation of primary resources for aggregates = 300,000 t/80% = 375,000 t or 187,500 m3

    • total excavation of raw materials = 12,135 m 3+ 187,500 m 3= 199,635 m 3

    scenario 1:

    • transport of waste = 227,811 t/30 t/load × 2 (to and fro) × 17 km/load = 258,186 km

    • transport of secondary materials = 100,000 t/30 t/load × 2 (to and fro) × 17 km/load = 113,333 km

    • transport of concrete = 300,000 t/10 t/load × 2 (to and fro) × 18 km/load = 1,080,000 km

    • transport of secondary materials (concrete) = 100,000 t/30 t/load × 2 (to and fro) × 1 km/load = 6,667 km

    • transport of primary materials (concrete) = 100,000 t/30 t/load × 2 (to and fro) × 170 km/load = 1,133,333 km

    • CO 2 emission = 2,591,519 km × 880 g CO2/km = 2,281 t = 228 ha year tropical rain forest

    • crude oil extraction = (2,591,519 km × 43 l/100 km)/16.79% = 6,637,005 l or 6,637 m3

    • excavation of primary resources for aggregates = 100,000 t/80% = 125,000 t or 62,500 m3

    • total excavation of raw materials = 6,637 m 3+ 62,500 m 3= 69,137 m 3

    scenario 2:

    • transport of mobile crusher = 2 × 2 loads × 2 (before and after project) × 17 km/load = 136 km

    • transport of mobile concrete plant = 2 × 2 loads × 2 (before and after project) × 17 km/load = 136 km

    • personnel of mobile plants = 2 teams × 228 days × 17 km/day = 7,752 km

    • transport of secondary materials = 27,811 t/30 t/load × 2 (to and fro) × 17 km/load = 31,519 km

    • transport of primary materials (concrete) = 100,000 t/30 t/load × 2 (to and fro) × 170 km/load = 1,133,333 km

    • CO2 emission = 1,165,124 km × 880 g CO2/km + 7,752 km × 260 g CO2/km = 1,027 t = 103 ha year tropical rain forest

    • crude oil extraction = (1,165,124 km × 43 l/100 km + 7,752 km × 12 l/100 km)/16.79% = 2,989,479 l or 2,989 m3

    • excavation of primary resources for aggregates = 100,000 t/80% = 125,000 t or 62,500 m3

    • total excavation of raw materials = 2,989 m 3+ 62,500 m 3= 65,489 m 3

Rights and permissions

Reprints and permissions

Copyright information

© 2013 RILEM

About this chapter

Cite this chapter

Vázquez, E. (2013). Construction and Demolition Waste Recycling in a Broader Environmental Perspective. In: Vázquez, E. (eds) Progress of Recycling in the Built Environment. RILEM State-of-the-Art Reports, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4908-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4908-5_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4907-8

  • Online ISBN: 978-94-007-4908-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics